Коммутационные и защитные аппараты высокого напряжения

Автор работы: Пользователь скрыл имя, 25 Октября 2015 в 16:28, реферат

Описание работы

В мире ужесточаются требования по экологической чистоте оборудования, и решения, которые раньше считались приемлемыми, сегодня подвергаются пересмотру. Во многих случаях задача обеспечения экологической чистоты выходит на первый план.
Наконец, следует отметить в числе важных задач снижение энергопотребления коммутационных аппаратов. Эта соответствует тем серьезным усилиям, которые предпринимаются в мире в части энергосбережения.
Цель работы – изучить сущность и назначение коммутационных и защитных аппаратов высокого напряжения, их виды и характеристики.

Содержание работы

Введение……………………………………………………………………………...3
1. Коммутационные и защитные аппараты. Назначение и классификация……...4
2. Условия работы аппаратов высокого напряжения и общие требования, предъявляемые к ним………………………………………………………………..6
3. Выключатели высокого напряжения:……………………………………………7
3.1. Воздушные выключатели………………………………………………….....10
3.2. Элегазовые выключатели…………………………………………………….12
3.3. Масляные выключатели ……………………………………………………...14
3.4. Электромагнитные выключатели…………………………………………….16
3.5. Вакуумные выключатели……………………………………………………..17
4. Защитные и токоограничивающие аппараты………………………………….19
Заключение..………………………………………………………………………...21
Список использованных источников ……………………………

Файлы: 1 файл

реферат .doc

— 165.50 Кб (Скачать файл)

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

 

 

 

 

 

 

РЕФЕРАТ

по дисциплине «Введение в специальность»

на тему «Коммутационные и защитные аппараты высокого напряжения»

 

 

 

 

 

                              Выполнил

                                                       студент группы \

 

 

                                                                           Проверил

__________________

_______________________________

 

 

 

 

 

 

 

СОДЕРЖАНИЕ

Введение……………………………………………………………………………...3

1. Коммутационные и защитные  аппараты. Назначение и классификация……...4

2. Условия работы аппаратов высокого  напряжения и общие требования, предъявляемые к ним………………………………………………………………..6

3. Выключатели высокого напряжения:……………………………………………7

3.1. Воздушные выключатели………………………………………………….....10

3.2. Элегазовые выключатели…………………………………………………….12

3.3. Масляные выключатели ……………………………………………………...14

 3.4. Электромагнитные выключатели…………………………………………….16

 3.5. Вакуумные выключатели……………………………………………………..17

4. Защитные и токоограничивающие аппараты………………………………….19

Заключение..………………………………………………………………………...21

Список использованных источников ……………………………………………..22

Приложение…………………………………………………………………………23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

Будущее коммутационной аппаратуры высокого напряжения связано с решением двух основных проблем – поиском новых высокоэффективных технических решений и вытеснением из эксплуатации устаревших (и экономически невыгодных) аппаратов. Решение обеих проблем требует больших финансовых затрат и времени, что и определяет скорость решения этих проблем.

Одна из основных задач в области коммутационной аппаратуры – повышение ее надежности. В мире регулярно проводится анализ отказов аппаратов. В Исследовательском комитете А3 СИГРЭ функционирует рабочая группа по изучению надежности оборудования высокого напряжения. Надежность оборудования зависит как от своевременной разработки аппаратов новых поколений, так и от своевременной замены устаревших аппаратов в эксплуатации.

Другая важная задача – снижение весогабаритных характеристик и материалоемкости аппаратов, уменьшение их числа за счет использования прогрессивных технических решений. При этом выполнение этой задачи не должно приводить к снижению надежности оборудования. 
К важным можно отнести и задачу снижения эксплуатационных затрат, создания практически необслуживаемого в течение всего срока службы оборудования.

В мире ужесточаются требования по экологической чистоте оборудования, и решения, которые раньше считались приемлемыми, сегодня подвергаются пересмотру. Во многих случаях задача обеспечения экологической чистоты выходит на первый план. 
Наконец, следует отметить в числе важных задач снижение энергопотребления коммутационных аппаратов. Эта соответствует тем серьезным усилиям, которые предпринимаются в мире в части энергосбережения.

Цель работы – изучить сущность и назначение коммутационных и защитных аппаратов высокого напряжения, их виды и характеристики.

1.КОММУТАЦИОННЫЕ И ЗАЩИТНЫЕ АППАРАТЫ. НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ

По функциональному признаку электрические аппараты высокого напряжения (АВН) подразделяются на следующие виды: 

 1) коммутационные аппараты (выключатели, разъединители, короткозамыкатели, отделители);

2) защитные и ограничивающие аппараты (предохранители, токоограничивающие реакторы, разрядники, нелинейные ограничители перенапряжений);

3) комплектные распределительные устройства (КРУ).

Коммутационные аппараты используются для формирования необходимых схем передачи энергии от ее источника (электростанции) к потребителю. [1]

Выключатели предназначены для оперативной и аварийной коммутации в энергосистемах, т.е. выполнения операций включения и отключения отдельных цепей при ручном или автоматическом управлении. Во включенном состоянии выключатели должны беспрепятственно пропускать токи нагрузки. Характер режима работы этих аппаратов несколько необычен: нормальным для них считается как включенное состояние, когда они обтекаются током нагрузки, так и отключенное, при котором они обеспечивают необходимую электрическую изоляцию между разомкнутыми участками цепи. Коммутация цепи, осуществляемая при переключении выключателя из одного положения в другое, производится нерегулярно, время от времени, а выполнение им специфических требований по отключению возникающего в цепи короткого замыкания чрезвычайно редко. Выключатели должны надежно выполнять свои функции в течение срока службы (25 лет), находясь в любом из указанных состояний, и одновременно быть всегда готовыми к мгновенному эффективному выполнению любых коммутационных операций, часто после длительного пребывания в неподвижном состоянии. Отсюда следует, что они должны иметь очень высокий коэффициент готовности: при малой продолжительности процессов коммутации (несколько минут в год) должна быть обеспечена постоянная готовность к осуществлению коммутаций. 

Секционные выключатели применяются в сборных шинах. В распределительных устройствах (РУ) электростанций секционные выключатели при нормальной работе обычно замкнуты. Они должны автоматически отключаться только при повреждении в зоне сборных шин. Вместе с ними должны отключаться и другие выключатели поврежденной секции. Таким образом, поврежденная секция РУ будет отключена, а остальная часть останется в работе. [4]

Разъединители применяются для коммутации обесточенных при помощи выключателей участков токоведущих систем, для переключения РУ с одной ветви на другую, а также для отделения на время ревизии или ремонта силового электротехнического оборудования и создания безопасных условий от смежных частей линии, находящихся под напряжением. Разъединители способны размыкать электрическую цепь только при отсутствии в ней тока или при весьма малом токе. В отличие от выключателей разъединители в отключенном состоянии образуют видимый разрыв цепи. После отключения разъединителей с обеих сторон объекта, например выключателя или трансформатора, они должны заземляться с обеих сторон либо при помощи переносных заземлителей, либо специальных заземляющих ножей, встраиваемых в конструкцию разъединителя. 

Отделитель служит для отключения обесточенной цепи высокого напряжения за малое время (не более 0,1 с). Он подобен разъединителю, но снабжен быстродействующим приводом. 

Короткозамыкатель служит для создания искусственного короткого замыкания (КЗ) в цепи высокого напряжения. Конструкция его подобна конструкции заземляющего устройства разъединителя, но снабженного быстродействующим приводом. [2]

Короткозамыкатели и отделители устанавливаются на стороне высшего напряжения РУ малоответственных потребителей, когда в целях экономии площади и стоимости РУ выключатели предусмотрены только на стороне низшего напряжения. 

Ограничивающие аппараты подразделяются на аппараты ограничения тока и напряжения. 

К токоограничивающим аппаратам относятся предохранители и реакторы высокого напряжения. Плавкие предохранители предназначены для защиты силовых трансформаторов и измерительных трансформаторов напряжения, воздушных и кабельных линий, конденсаторов. 

Токоограничивающие реакторы представляют собой катушку индуктивности без стали и служат для ограничения тока короткого замыкания (КЗ) и поддержания напряжения на сборных шинах РУ. Применение их позволяет существенно снизить требования к выключателям по электродинамической, термической стойкости и отключающей способности в сетях с реакторами по сравнению с аналогичными сетями, не защищенными реакторами. 

В качестве ограничителей грозовых и внутренних перенапряжений используются разрядники и ограничители перенапряжения. Они должны быть установлены вблизи силовых повышающих трансформаторов и вводов воздушных линий в РУ. Они позволяют снизить требования к прочности электрической изоляции аппаратов и оборудования РУ, уменьшить габаритные размеры электрической установки и значительно снизить ее стоимость. 

2.УСЛОВИЯ РАБОТЫ АППАРАТОВ ВЫСОКОГО НАПРЯЖЕНИЯ И ОБЩИЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К НИМ

Аппараты высокого напряжения могут устанавливаться как внутри помещения, так и на открытых распределительных устройствах (ОРУ). Условия работы при этом значительно различаются, и это находит отражение в их конструктивных особенностях. Во время эксплуатации аппараты ОРУ подвергаются воздействию окружающей среды. Эти воздействия особенно вредно сказываются на состоянии изоляции аппаратов. Поэтому все аппараты ОРУ рассчитываются на воздействие гололеда, ветра и загрязнений. 

Загрязнения и периодические увлажнения изоляции АВН требуют соответствующего развития поверхности изоляторов. Для изоляторов наружной установки предусмотрены три исполнения в зависимости от длины пути тока утечки: категория I — 1,67 см/кВ, категория II — 2,5 см/кВ, категория III — 3,5 см/кВ. Согласно этим нормам допустимая длина утечки соответствует удельной длине утечки — длине, отнесенной к 1 кВ наибольшего рабочего линейного напряжения. Для аппаратов внутренней установки длина пути утечки не нормируется. [3]

Аппараты внешней установки оказываются под воздействием коммутационных перенапряжений, зависящих от вида коммутации, типа выключателя, параметров электрической сети и грозовых импульсов, возникающих при воздействии грозовых разрядов на электрическую сеть. Природа происхождения перенапряжений определяет специфическую форму импульса перенапряжений. Так, грозовой импульс имеет обозначение 1,2/50 мкс, что означает крутизну фронта импульса 1,2 ± 0,3 мкс при общей длительности 50 ± 10 мкс. Коммутационные перенапряжения имитируются апериодическим импульсом с длительностью фронта tф = 250 ± 50 мкс и длительностью полуспада tпсп = 2500 ± 1500 мкс. 

  1. ВЫКЛЮЧАТЕЛИ ВЫСОКОГО НАПРЯЖЕНИЯ

Среди основных параметров выключателей высокого напряжения следует выделить группу номинальных параметров, присущих всем типам выключателей и определяющих условия их работы. 

К основным номинальным параметрам выключателей в соответствии с рекомендациями Международной электротехнической комиссии (МЭК) относятся: номинальное напряжение Uном; наибольшее рабочее напряжение Uн.р; номинальный уровень изоляции в киловольтах; номинальная частота  ном; номинальный ток Iном; номинальный ток отключения Iо.ном; номинальный ток включения Iв.ном; номинальное переходное восстанавливающееся напряжение (ПВН) при КЗ на выводах выключателя; номинальные параметры при неудаленных КЗ; номинальная длительность КЗ; номинальная последовательность операций (номинальные циклы); нормированные показатели надежности и др. [8]

К параметрам, характерным для воздушных выключателей, следует отнести номинальное давление и расход воздуха, необходимые для проведения операций включения и отключения, нижний предел давления для производства отдельных операций. 

Рассмотрим некоторые наиболее важные параметры. Номинальное напряжение Uном (линейное) — это базисное напряжение из стандартизованного ряда напряжений, определяющее уровень изоляции сети и электрического оборудования. Действительные напряжения в различных точках системы могут отличаться от номинального, однако они не должны превышать наибольшие рабочие напряжения (номинальное напряжение по МЭК), установленные для продолжительной работы. Номинальные напряжения выключателей соответствуют классам напряжения (Приложение 1). 

Номинальный уровень изоляции выключателя характеризуется значениями испытательных напряжений, воздействующих на основную изоляцию выключателя. 

Номинальный ток — действующее значение наибольшего тока, допустимого по условиям нагрева токоведущих частей выключателя в продолжительном режиме, принимающее следующие значения: 200; 400; 600; 800; 1000; 1250; 1600; 2000; 2500; 3150; 4000; 5000; 6300; 8000; 10000; 12 500; 16 000; 20 000; 25 000; 31 500 А. 

Коммутационная отключающая способность выключателя характеризуется номинальным током отключения Iо.ном, который может отключить выключатель при наибольшем рабочем напряжении и нормированных условиях восстановления напряжения. Ток отключения характеризуется действующим значением его периодической составляющей Iо.п, отнесенной к моменту возникновения дуги (момент размыкания дугогасительных контактов) и называемой номинальным током отключения Iо.ном (2,5; 3,2; 4; 5; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 35,5; 40; 45; 50; 56; 63; 71; 80; 90; 100; 112; 125; 140; 160; 180; 200; 224; 250 кА), а также нормированным процентным содержанием bн апериодической составляющей, равным отношению апериодической составляющей ia тока отключения к амплитуде периодической составляющей ( Iо.п =  Iо.ном) того же тока в момент размыкания дугогасительных контактов. Ток отключения выключателя определяется суммой периодической и апериодической составляющих: 

     (1) 

Номинальный ток включения Iв.ном — наибольший ток, который выключатель может включить при наибольшем рабочем напряжении. При возникновении КЗ в цепи за время около 10 мс ток достигает своего максимального значения, называемого ударным током КЗ. Поэтому номинальный ток включения должен быть не менее ударного тока КЗ из условия возможности включения на существующее КЗ в цепи [в режиме автоматического повторного включения (АПВ)]. [9]

Номинальная длительность тока КЗ характеризуется способностью выключателя выдерживать во включенном положении без повреждений ток электродинамической стойкости (ударный ток) iуд = 2,55 Iо.ном и ток термической стойкости Iт = Iо.ном. Время протекания тока Iт составляет 1 или 2 с для выключателей при Uном > 330 кВ и 1 или 3 с для выключателей при Uном > 220 кВ. 

Информация о работе Коммутационные и защитные аппараты высокого напряжения