Автор работы: Пользователь скрыл имя, 14 Мая 2013 в 19:37, курсовая работа
За два десятилетия после их возникновения формировались новые фундаментальные и прикладные направления физической оптики — оптическая квантовая электроника и нелинейная оптика. В настоящее время невозможно представить ни современные фундаментальные исследования, ни решение технических и технологических задач без использования лазеров.
Кристаллические лазеры с иттербиевым легированием, такие как Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, или на основе иттербиевого стекловолокна; обычно работают в диапазоне 1020—1050 нм; потенциально самые высокоэффективные благодаря малому квантовому дефекту; наибольшая мощность сверхкоротких импульсов достигнута на Yb:YAG-лазере. Волоконные лазеры с иттербиевым легированием обладают рекордной непрерывной мощностью среди твердотельных лазеров (десятки киловатт)
алюмо-иттриевые с эрбиевым легированием, 1645 нм
алюмо-иттриевые с тулиевым легированием, 2015 нм
алюмо-иттриевые с гольмиевым легированием, 2096 нм, Эффективный ИК-лазер, излучение поглощается влажными материалами толщиной менее 1 мм. Обычно работает в импульсном режиме и используется в медицине.
Титан-сапфировые лазеры. Хорошо перестраиваемый по длине волны инфракарасный лазер, используемый для генерации сверхкоротких импульсов и в спектроскопии
Лазеры на эрбиевом стекле, изготавливаются из специального оптоволокна и используются как усилители в оптических линиях связи.
Микрочиповые лазеры. Компактные интегрированные импульсные твердотельные лазеры, наиболее широко используются в сверхъярких лазерных указках
Полупроводниковые лазерные диоды
Самый распространенный тип
лазеров: используются в лазерных указках,
лазерных принтерах, телекоммуникациях
и оптических носителях информации(CD/DVD).
Мощные лазерные диоды используются
для накачки современных
Лазеры с внешним резонатором (External-cavity lasers), используются для создания этиловом
Лазеры с квантовым каскадом спирте или этиленгликоле. Позволяют осуществлять пререстройку длины волны излучения в диапазоне от 350 нм до 850 нм (в зависимости от типа красителя). Применение - спектроскопия, медицина (в т.ч. фотодинамическая терапия), фотохимия. высокоэнергетических импульсов
Лазеры на красителях Тип лазеров, использующий в качестве активной среды раствор органических красителей
Лазеры на свободных электронах
Расшифровка обозначений
YAG — алюмо-иттриевый гранат
KGW — калий-гадолиниевый вольфрамат
YLF — фторид иттрия-лития
2. Поверхностная лазерная обработка
На режимах, не вызывающих
разрушения материала, реализуются
различные процессы лазерной поверхностной
обработки. В основе этих процессов
лежат необычные структурные
и фазовые изменения в
2.1. Виды поверхностной лазерной обработки
В зависимости от степени развития указанных явлений в материале различают несколько видов поверхностной лазерной обработки (табл. 1), возможность реализации которых определяется основном уровнем плотности мощности излучения.
Упрочнение без фазового перехода предполагает структурные изменения в материале при уровне плотности мощности излучения, не приводящем к расплавлению облученной зоны. При этом виде обработки сохраняется исходная шероховатость обрабатывающей поверхности. Быстрый локальный нагрев поверхности и последующее охлаждение за счет теплоотвода в массив материала приводят к образованию в поверхностном слое стали специфической высоко-дисперсной, слаботравящейся, дезориентированной в пространстве структуры, имеющей микротвердость, в 2—4 раза превышающую микротвердость основы (матрицы). При малых плотностях мощности, скоростях нагрева и охлаждения, не превышающих критических значений, может быть реализован режим отжига (отпуска) ранее закаленных материалов. Необходимость такой операции возникает, например, при изготовлении листовых пружин, отбортовке краев обоймы подшипника и т. п. Упрочнение с фазовым переходом предполагает плавление материала в облученной зоне. Этот вид упрочнения требует более высокой плотности мощности излучения, что позволяет добиться значительных глубин упрочненного слоя. Поверхность этого слоя имеет характерное для закалки из жидкого состоянии дендритное строение. Затем идет ЗТВ, а между ней и материалом основы расположена переходная зона. При данном виде поверхностной обработки, естественно, нарушается исходная шероховатость, что тре бует введения в технологический процесс изготовления изделия дополнительной финишной операции (шлифования).
При реализации рассмотренных видов обработки не требуется специальной среды, процесс проводится на воздухе. При этом возможна частичная диффузия составляющих воздуха в облученную зону.
При следующем виде поверхностной обработки — лазерном легировании для насыщения поверхностного слоя легирующими элементами требуется специальная среда (газообразная, жидкостная, твердая). В результате на обрабатываемой поверхности образуется новый сплав, отличный по составу и структуре от матричного материала.
Виды поверхностной лазерной обработки Таблица 1
Вид обработки |
плотность мощности 1 см 2 |
скорость охлаждения С |
глубина ЗТВ,мм |
Упрочнение без фазового перехода |
103-104 |
104-105 |
0,2-0,5 |
Лазерный отжиг (отпуск) |
102-103 |
- |
0.05-0,1 |
упрочнение с фазовым переходом |
104-105 |
105-106 |
1,2- З.0 |
лазерное легирование |
104-106 |
104-106 |
0,2-2,0 |
Лазерная наплавка (напыление) |
104-106 |
104-106 |
0,02-3,0 |
Амортизация поверхности |
106-108 |
104106 |
0,01-0,05 |
шоковое упрочнение |
104-106 |
104-106 |
0,02-0,2 |
Лазерная наплавка (напыление) позволяет нанести па поверхность обрабатываемого материала слой другого материала, улучшающий эксплуатационные характеристики основного.
Новая разновидность лазерного упрочнения — аморфизация поверхности сплава в условиях скоростного облучения (очень коротким импульсом или сканирующим лучом). Сверхвысокие скорости теплоотвода, достигаемые при этом, обеспечивают своеобразное «замораживание» расплава, образование металлических стекол (метгласса) или аморфного состояния поверхностного слоя. В результате достигаются высокая твердость, коррозионная стойкость, улучшенные магнитные характеристики и другие специфические свойства материала. Процесс лазерной аморфизации можно осуществить при обработке сплавов специальных составов (в том числе и на основе железа), а также других материалов, предварительно покрытых специальными составами, которые самостоятельно или совместно с матричным материалом склонны к аморфизации.
Шоковое упрочнение имеет место при воздействии на материал мощного импульса излучения наносскундной длительности. Предварительно на материал наносится тонкий слой легкоплавкого металла. Воздействие мощного импульса вызывает взрывообразное испарение легкоплавкого металла, что приводит к возникновению импульса отдачи, в свою очередь генерирующего мощную ударную волну в материале. В результате происходит пластическое деформирование материала, а при нагреве поверхностного слоя-— и соответствующие изменения в структуре. Первые четыре вида поверхностной лазерной обработки к настоящему времени получили наибольшее распространение. Для практической реализации аморфизации и шокового упрочнения требуются дополнительные исследования. Все эти виды обработки можно осуществить с помощью как импульсного, так и непрерывного излучения, причем упрочнение без фазового перехода более пригодно для прецизионной обработки поверхностей сравнительно небольших размеров, производительность процесса ограничивается сравнительно невысокой частотой следования импульсов выпускаемого оборудования. Непрерывное излучение позволяет производить обработку с высокой производительностью поверхностей больших размеров.
2.2. Обработка импульсным излучением
При фокусировании излучения
сферической оптикой
, где D длина участка упрочнения; t -время обработки; п -число импульсов; K0 — коэффициент перекрытия; f — частота следования импульсов.
При двух координатной обработке одними из основных параметров является шаг s относительного перемещения по оси х и шаг s' перемещения по оси у. От соотношения этих шагов и диаметра зоны облучения зависят степень заполнения (упаковки) профиля, эффективность процесса. Обработка может быть реализована по одной из четырех схем (табл. 2). Эффективность обработки по схеме характеризуется коэффициентом использования импульсов Ки, который определяется из соотношения
где F' — площадь облученной поверхности.
Производительность процесса двухкоординатной обработки
Это выражение может быть использовано для ориентировочной оценки производительности, так как реальные условия вносят свои коррективы. Например, при D = 4 мм, Ки—0,74 (см. табл. 4, схема 3) и f =1 Гц производительность упрочнения составит 550 мм2/мин.
К технологическим
Схемы поверхностной обработки импульсным излучением Таблица 2
Номер схемы |
схема |
характеристика |
1 |
|
Ки =1 Ки =0,78 s=s'=D |
2 |
|
Ки =0,7 Ки =0,46 s=s'=0,7D |
3 |
|
Ки =0,74 s=0,8D s'=0,74D |
4 |
|
Ки =0,8 Ки =0,78 s=s'=0,8D |
Повышение эффективности упрочнения может быть достигнуто увеличением поглощательной способности материала при обработке импульсным инфракрасным излучением {X — 1,06 мкм). Для этого используют покрытие, например, коллоидный раствор графита, или предварительную химическую обработку облучаемой поверхности раствором па основе пикриновой кислоты. Глубина упрочнения зависит от вида материала (марки стали) и в меньшей степени от окружающей среды. В закаленных сталях глубина упрочнения при одних и тех же условиях облучения на 30 — 60% больше, чем в отожженных сталях. Степень упрочнения также зависит как от вида материала, так и от его исходного состояния. Для закаленных сталей уровень упрочнения выше, чем для отожженных.
При реализации линейного упрочнения обработка обычно ведется с перекрытием зон лазерного воздействия. В перекрытых участках происходит отпуск огнеупрочненного материала в результате действия последующего импульса. В результате в поперечном сечении упрочненный слой представляет собой характерную «чешуйчатую» структуру. При двухкоординатном упрочнении дополнительное перекрытие несколько усложняет происходящие в зоне обработки процессы. В частности, это проявляется в узловых точках, где материал четырежды подвергался облучению.
В фактуре поверхности также обнаруживается характерная «чешуйчатость». Центральную и основную часть каждого пятна занимает слаботравящаяся зона с твердостью до 13000 МПа. Отсутствие в этой зоне карбидов показывает, что температура нагрева здесь существенно превышала критическую точку, в результате чего все карбиды растворились в аустеннте. По окончании лазерного импульса при последующем быстром охлаждении за счет теплоотвода в массив материала в этой зоне произошла полная закалка с образованием мартеиситной структуры, обладающей высокой твердостью.
Значительная часть аустенита при этом сохранилась вследствие большого содержания и нем углерода и хрома, которые перешли в твердый раствор при нагреве до высоких температур. Однако этот остаточный аустенит испытал в процессе закалки фазовый наклеп, усиленный вследствие локального и импульсного характера термического никла, поэтому обладает высокой твердостью.
Концентрично с первой расположена вторая зона, занимающая периферийную часть пятим и обладающая более сильной травимостыо и несколько меньшей твердостью (8000—10000 МПа). Невозможна также обработка сканирующим излучением с амплитудой сканирования. Тогда производительность обработки будет зависеть от величины и скорости перемещения заготовки: . Другие закономерности упрочнения сталей непрерывным излучением во многом подобны рассмотренным закономерностям обработки импульсным излучением. Параметры (ширина, площадь упрочненной зоны, глубина упрочнения), имеющие размерность, степень упрочнения, шероховатость обработанной поверхности зависят как от плотности мощности излучения и скорости обработки, так и от вида обрабатываемого материала. Важную роль при этом также играет вид поглощающего покрытия, наносимого на поверхность для повышения эффективности обработки.На сегодняшний день разработано и используется большое многообразие поглощающих покрытий: фосфатные, хромовые, коллоидные растворы, графит, различные краски, оксиды металлов, силикаты и пр. Если для сравнительной оценки покрытий использовать критерий эффективности поглощения излучения kп= hu/ho , где hu ho, — глубина зоны термического влияния соответственно с покрытием и без него, то ряд предпочтительности покрытий будет иметь следующий вид:
Таблица 3
Покрытие |
С r |
Cd |
С |
ZnO |
Zn3(PO4)2 |
Si02 Al2O3 С |
FeO4 |
0,6 |
2,0 |
3.0 |
4.5 |
5,1 |
6.5 |
6.7 |
Неотъемлемой структурной составляющей этой зоны являются карбидные частицы. В отличие от первой данная зона имеет неоднородное строение, причем степень неоднородности выше там, где вторая зона перекрывает первую, образовавшуюся в соседнем пятне нагрева, тогда как на границе с исходной структурой она меньше. Структура этой зоны — мартенсит, остаточный аустенит и карбиды, не растворившиеся полностью.
Информация о работе Лазер. История создания. Принцип действия