Материальные уравнения электромагнитного поля в среде с дисперсией

Автор работы: Пользователь скрыл имя, 23 Апреля 2014 в 09:35, реферат

Описание работы

Дисперсию электромагнитных волн можно условно разделить на частотную (за счет зависимости , , от частоты) и пространственную (за счет зависимости этих же параметров от волнового вектора ). Как уже говорилось, частотная дисперсия существенна, если частота электромагнитных волн близка к собственным частотам колебаний в среде. Пространственная же дисперсия становится заметной, когда длина волны сравнима с некоторыми характерными размерами.

Содержание работы

Введение........................................................................................................................3
§ 1. Материальные уравнения электромагнитного поля в среде с дисперсией.....5
§ 2. Закон дисперсии. Вектор объемной плотности поляризации.........................10
§ 3. Зависимость показателя преломления и поглощения от частоты..................12
Заключение.................................................................................................................15
Литература..................................................................................................................16

Файлы: 1 файл

Dispersion.doc

— 451.00 Кб (Скачать файл)

Содержание.

 

Введение........................................................................................................................3

§ 1. Материальные уравнения электромагнитного поля в среде с дисперсией.....5

§ 2. Закон дисперсии. Вектор объемной плотности поляризации.........................10

§ 3. Зависимость показателя преломления и поглощения от частоты..................12

Заключение.................................................................................................................15

Литература..................................................................................................................16

 

Введение.

 

Важнейшей характеристикой линейной распределенной системы является закон дисперсии, который связывает волновое число и частоту монохроматической волны. Он может быть записан как , или в неявной форме .

Когда плоская волна описывается одним (вообще говоря, интегродифференциальным) уравнением, закон дисперсии получают, отыскивая его решение в виде . В простейшем случае процесс распространения волны описывается уравнением

.

При этом волновое число связано с частотой линейной зависимостью , или , где скорость распространения волны есть постоянная величина. Однако уже при учете диссипативных процессов поведение волны описывается более сложными уравнениями. Закон дисперсии также усложняется. Для звуковых волн в вязкой теплопроводящей среде и электромагнитных волн в среде с проводимостью справедливы следующие соотношения между волновым числом и частотой:

.

В более общих случаях от частоты могут сложным образом зависеть действительная и мнимая части волнового числа:

.

Действительная часть характеризует зависимость от частоты фазовой скорости распространения волны , а мнимая часть — зависимость коэффициента затухания волны от частоты.

Во многих случаях волновой процесс удобно описывать не одним уравнением типа волнового, а системой связанных интегродифференциальных уравнений . Здесь — матричный оператор, действующий на вектор-столбец .В качестве , например, для акустических волн может служить совокупность переменных (колебательная скорость, приращения плотности, давления, температуры), а для электромагнитных волн — компоненты векторов напряженностей электрического и магнитного полей, электрического смещения и магнитной индукции. В этом случае формальная схема отыскания закона дисперсии такова. Ищем решение системы в виде :

,

Решение будет нетривиальным, только если . Отсюда получаются искомые зависимости . Наличие у дисперсионного уравнения нескольких корней означает, что система может описывать несколько типов собственных волн (мод) среды.

Частотная дисперсия приводит к изменению закономерностей распространения немонохроматических волн. Действительно, различные спектральные компоненты обладают в диспергирующей среде отличающимися скоростями и коэффициентами затухания:

.

В силу дисперсии фазовой скорости в процессе распространения изменяются фазовые соотношения между спектральными компонентами. Следовательно, изменяется результат их интерференции: форма немонохроматической волны искажается. Дисперсия коэффициента поглощения приводит к трансформации частотного спектра волны и дополнительному искажению формы импульса.

 

§1. Материальные уравнения электромагнитного поля в среде с дисперсией.

 

Дисперсионные эффекты часто проявляются при распространении электромагнитных волн. Покажем, как видоизменяются исходные уравнения при учете этих свойств. Система уравнений Максвелла сохраняет свой вид. Свойства среды должны быть учтены в материальных уравнениях:

.

Для статических и медленно изменяющихся полей можно написать

,

где — константы, т. е. значения и в некоторой точке среды и в некоторый момент времени определяются значениями и в той же точке и в тот же момент времени.

При быстром изменении поля вследствие инерции внутренних движений и наличия пространственной микроструктуры среды наблюдается зависимость поляризации от поля, действующего в других точках и в другие моменты времени. При этом нужно иметь в виду, что в силу условия причинности поляризация и, следовательно, индукция зависят от полей, действовавших только в предыдущие моменты времени.

Сказанное можно записать математически, представляя материальные уравнения в общей интегральной форме:

,            (1.1)

,           (1.2)

.            (1.3)

По дважды встречающимся индексам здесь и везде в дальнейшем предполагается суммирование.

Выражения (1.1) — (1.3) представляют собой наиболее общую функциональную форму записи материальных уравнений для линейной среды. В этой записи учтена возможность проявления нелокальности, запаздывания и анизотропных свойств среды.

В частном случае, если среда однородна в пространстве и не изменяет со временем своих свойств, материальные характеристики , , должны зависеть лишь от разностей координат и времени . Тогда

,           (1.4)

,           (1.5)

.           (1.6)

Связь между электрическим смещением и магнитной индукцией, полями и поляризациями среды определяется соотношениями

.             (1.7)

Поэтому материальные уравнения можно записать также в виде

,           (1.8)

где — тензор восприимчивости среды. Аналогичное выражение можно записать для .

Для проведения дальнейшего анализа удобно разложить по плоским волнам:

.

После обычного перехода в фурье-представление в выражениях для и получаем простую зависимость

,             (1.9)

,             (1.9)

где

.        (1.10)

Видно, что компоненты тензора диэлектрической проницаемости зависят в общем случае от частоты и от волнового вектора волны.

Аналогичный вывод можно сделать для магнитной проницаемости и проводимости .

Таким образом, дисперсия при распространении электромагнитных волн может проявляться двояким образом — как частотная (за счет зависимости , , от частоты) и как пространственная (за счет зависимости этих же параметров от волнового вектора ). Частотная дисперсия существенна, если частота электромагнитных волн близка к собственным частотам колебаний в среде. Пространственная же дисперсия становится заметной, когда длина волны сравнима с некоторыми характерными размерами.

Для электромагнитных волн в большинстве случаев, даже в оптическом диапазоне, характерный размер (где — длина волны в среде: ) и пространственной дисперсией можно пренебречь. Однако в магнитоактивной плазме существуют области резонанса, в которых и параметр становится значительным уже в радиодиапазоне. Кроме того, при полном пренебрежении величинами, содержащими малое отношение , не учитываются некоторые явления, возникающие при распространении электромагнитных волн в различных средах. Так, учет пространственной дисперсии в плазме позволяет объяснить появление бегущих плазменных волн. Пространственная дисперсия является главной причиной (а не поправкой), вызывающей появление естественной оптической активности и оптической анизотропии кубических кристаллов. Если не интересоваться этими специальными случаями, то при рассмотрении частотной дисперсии пространственной дисперсией можно пренебречь.

При учете только частотной дисперсии материальное уравнение (1.9) имеет вид

.            (1.11)

В отличие от (1.9) здесь взяты не компоненты плоских волн поля , а лишь временные гармоники. Диэлектрическая проницаемость для волны с частотой — это тензор, который в случае изотропной среды обращается в скаляр:

            (1.12)

(напомним, что — действительная величина). Из (1.12) следует, что функция является комплексной:

,            (1.13)

,        (1.14)

т.е. является четной функцией, а — нечетной. Все сказанное справедливо также для :

.            (1.15)

Если в недиспергирующей среде диэлектрическая проницаемость — чисто реактивный параметр, а проводимость — чисто активный, то в среде с дисперсией это различие утрачивается. С увеличением частоты до значений, близких к собственным частотам среды, различие в свойствах диэлектриков и проводников постепенно исчезает. Так, наличие у среды мнимой части диэлектрической проницаемости с макроскопической точки зрения неотличимо от существования проводимости — и то и другое приводит к выделению тепла. Поэтому электрические свойства вещества можно характеризовать одной величиной — комплексной диэлектрической проницаемостью

,             (1.16)

где .

Можно установить предельный вид диэлектрической проницаемости при больших частотах. В пределе при имеем

,

и диэлектрическая проницаемость , определяемая выражениями (1.6), (1.12), стремится к единице при .

Это же свойство диэлектрической проницаемости следует и из простого физического рассмотрения. При , когда частота волны велика по сравнению с собственными частотами колебаний электронов в атомах вещества, электроны можно считать свободными. Уравнение движения свободного электрона под действием гармонического поля и решение этого Уравнения имеют вид

.

Здесь — масса и заряд электрона. Мы не учитываем силу, действующую на заряд со стороны магнитного поля, так как рассматривается нерелятивистский случай ( ). Поляризация среды (дипольный момент единицы объема, содержащей электронов) равна

.

Отсюда и

.            (1.17)

При мы получаем из (1.17) прежний результат: и . Область применимости формулы (1.17) для сред, в которых нет свободных электронов, лежит в диапазоне далекой ультрафиолетовой области для самых легких элементов.

С учетом (1.16) уравнения Максвелла для комплексных амплитуд примут вид

,          (1.18)

.           (1.18)

Поясним вывод уравнения . Из уравнения непрерывности при гармонической зависимости от времени следует, что

.

Подставляя это соотношение в уравнение Максвелла , запишем его в форме

.

Учитывая определение , получим уравнение .

Таким образом, для высокочастотных монохроматических полей вместо диэлектрической проницаемости и проводимости удобно ввести комплексную диэлектрическую проницаемость, объединяющую оба эти понятия. Физически это означает, что ток в среде для высокочастотных полей нецелесообразно рассматривать как сумму тока проводимости и тока смещения. Вместо этого вводится полный ток

,              (1.19)

где — комплексный вектор поляризации среды.

 

§2. Закон дисперсии. Вектор объемной плотности поляризации.

 

Рассмотрим простые физические модели диспергирующих сред. Ясно, что простые модели, отражающие реальные свойства среды, могут быть построены в немногих случаях. Тем не менее они очень важны для понимания физики и заслуживают подробного обсуждения.

Для нахождения зависимости от частоты (закона дисперсии) необходимо решить задачу о взаимодействии электромагнитной волны с имеющимися в среде зарядами.

Все современные теории дисперсии учитывают молекулярное строение вещества и рассматривают молекулы как динамические системы, обладающие собственными частотами. Молекулярные системы подчиняются законам квантовой механики. Однако результаты классической теории дисперсии во многих случаях приводят к качественно правильному выражению для показателей преломления и поглощения как функций частоты.

Диэлектрики условно разделяются на два типа — неполярные и полярные. В молекулах неполярных диэлектриков заряды электронов точно компенсируют заряды ядер, причем центры отрицательных и положительных зарядов совпадают. В этом случае в отсутствие электромагнитного поля молекулы не обладают дипольным моментом. Под действием поля волны происходит смещение электронов (ионы при этом можно считать неподвижными, поскольку их масса велика по сравнению с массой электронов) а каждая молекула поляризуется — приобретает дипольный момент . Если диэлектрик однороден и в единице объема содержится одинаковых молекул, то вектор объемной плотности поляризации .

Для определения вектора необходимо решить уравнение движения электронов в молекуле под действием поля волны и найти смещение электронов как функцию поля. В классической теории дисперсии описание движения электронов в молекуле основано на модели Друде — Лоренца, согласно которой молекула представляется в виде одного или нескольких линейных гармонических осцилляторов, соответствующих нормальным колебаниям электронов в молекуле. Рассмотрим уравнение движения такого осциллятора:

.             (2.1)

Здесь — эффективная масса, — константа затухания, имеющая размерность частоты, — резонансная угловая частота нормального колебания, — поле, действующее на диполь. Для плотных сред действующее поле в однородном диэлектрике отличается от среднего макроскопического поля в среде на величину и равно

.

Отметим, что последнее равенство справедливо для изотропной среды и для кристаллов кубической симметрии.

Информация о работе Материальные уравнения электромагнитного поля в среде с дисперсией