Автор работы: Пользователь скрыл имя, 24 Ноября 2013 в 14:46, реферат
На пороге ХХI века человек все чаще и чаще стал задумываться о том, что станет основой его существования в новой эре. Энергия была и остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать. Homo Sapiens прошел путь от первого костра до атомных электростанций, освоил добычу основных традиционных энергетических ресурсов - угля, нефти и газа, научился использовать энергию рек, освоил “мирный атом”, но все активнее обсуждаются вопросы использования новых нетрадиционных, альтернативных видов энергии.
За последние десятилетия достигнуты определенные успехи в использовании тепловой энергии океана. Были созданы установки мини-ОТЕС и ОТЕС-1 (ОТЕС – начальные буквы английских слов Осеаn Тhеrmal Energy Conversion, т.e. преобразование тепловой энергии океана. Пробная эксплуатация установки мини-ОТЕС в течение трех с половиной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, не считая мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Полная мощность установки составляла в среднем 48,7 кВт, максимальная –53 кВт; 12 кВт (максимум 15) установка отдавала на зарядку аккумуляторов. Остальная вырабатываемая мощность расходовалась на собственные нужды установки. В их число входят затраты анергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии.
Установка мини-ОТЕС смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случаи необходимости быстро отсоединить трубопровод. Полиэтиленовая труба одновременно используется и для заякоривания системы труба–судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой.
Новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это – одна грандиозная труба, в верхней части которой находится круглый машинный зал, где размещены все необходимые устройства для преобразования энергии. Верхний конец трубопровода холодной воды расположится в океане на глубине 25–50 м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут установлены турбоагрегаты, работающие на парах аммиака, а также все остальное оборудование. Масса всего сооружения превышает 300 тыс. т.
Подводя итог, можно выделить то, что энергетические ресурсы мирового океана поистине колоссальны. Пусть человек пока и не в состоянии использовать их полностью, но работы над этим ведутся, создаются все более и более совершенные агрегаты для генерирования энергии океана в электроэнергию. Главным критерием производства и эксплуатации данных установок по-прежнему является финансовый вопрос. К сожалению, на данном этапе технического развития человек не в состоянии избежать негативного влияния на природу.
ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ
Издавна люди знают о
стихийных проявлениях
Геотермальная энергетика — направление энергетики, основанное на производстве электрической и тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях.
Недра Земли таят в себе огромный, практически неисчерпаемый источник энергии. Ежегодное излучение внутреннего тепла на нашей планете составляет 2,8·1014 млрд. кВт·ч. Оно постоянно компенсируется радиоактивным распадом некоторых изотопов в земной коре.
Источники же геотермальной энергии могут быть двух типов. Первый тип – это подземные бассейны естественных теплоносителей – горячей воды (гидротермальные источники), или пара (паротермальные источники), или пароводяной смеси. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении.
Второй тип – это тепло горячих горных пород. Закачивая в такие горизонты воду, можно также получить пар или перегретую воду для дальнейшего использования в энергетических целях. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территориях, потому наиболее перспективным считается использование геотерм в качестве источника тепла. Перспективными источниками перегретых вод обладают множественные вулканические зоны планеты, в том числе Камчатка, Курильские, Японские и Филиппинские острова, обширные территории Кордильер и Анд.
На 2006 г. в России разведано 56 месторождений термальных вод. На двадцати месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкесия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край).
Рис. 12 Геотермальная ЭС в Исландии
От того, какой источник
геотермальной энергии
Следует сказать, что потенциальная суммарная рабочая мощность геотермальных электростанций в мире уступает большинству станций на иных возобновимых источниках энергии. Однако направление получило развитие в силу высокой энергетической плотности в отдельных заселённых географических районах, в которых отсутствуют или относительно дороги горючие полезные ископаемые, а также благодаря правительственным программам.
Установленная мощность геотермальных электростанций в мире на начало 1990-х составляла около 5 тысяч МВт, на начало 2000-х — около 6 тысяч МВт. В конце 2008 года суммарная мощность геотермальных электростанций во всём мире выросла до 10,5 тысяч МВт.
Но в обоих вариантах
использования главный
Итак, можно утверждать, что геотермальная энергия имеет четыре выгодные отличительные черты.
Во-первых, её запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую величину, которая в 3,5 тысячи раз превышает запасы традиционных видов минерального топлива.
Во-вторых, геотермальная энергия довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. В пределах этих поясов можно выделить отдельные наиболее перспективные «геотермальные районы», примерами которых могут служить Калифорния в США, Новая Зеландия, Япония, Исландия, Камчатка, Северный Кавказ в России. Только в бывшем СССР к началу 90-х годов было открыто около 50 подземных бассейнов горячей воды и пара.
В-третьих, использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии.
Наконец, в-четвертых, геотермальная
энергия в экологическом
Подводя итог, вкратце можно сказать, что достоинствами геотермальной энергии можно считать практическую неисчерпаемость ресурсов, независимость от внешних условий, времени суток и года, возможность комплексного использования термальных вод для нужд теплоэлектроэнергетики и медицины. Недостатками же ее являются высокая минерализация термальных вод большинства месторождений и наличие токсичных соединений и металлов, что исключает в большинстве случаев сброс термальных вод в природные водоемы и необходимость ее обратной закачки в подземные «хранилища».
ВОДОРОДНАЯ ЭНЕРГЕТИКА
Водородная энергетика — развивающаяся отрасль энергетики, направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в оборот водородной энергетики).
В свободном состоянии и при нормальных условиях водород — бесцветный газ, без запаха и вкуса. Относительно воздуха водород имеет плотность 1/14. Он обычно и существует в комбинации с другими элементами, например, кислорода в воде, углерода в метане и в органических соединениях. Поскольку водород химически чрезвычайно активен, он редко присутствует как несвязанный элемент.
Охлажденный до жидкого состояния водород занимает 1/700 объема газообразного состояния. Водород при соединении с кислородом имеет самое высокое содержание энергии на единицу массы: 120.7 ГДж/т. Это — одна из причин, почему жидкий водород используется как топливо для ракет и энергетики космического корабля, для которой малая молекулярная масса и высокое удельное энергосодержание водорода имеют первостепенное значение.
Рис. 13 Области применения водорода и водородсодержащего газа
Добавление водорода к обычному топливу двигателей внутреннего сгорания и газовых турбин приводит к увеличению КПД и уменьшению уровня вредных выбросов.
Запасы водорода, связанного в органическом веществе и в воде, практически неисчерпаемы. Разрыв этих связей позволяет производить водород и затем использовать его как топливо. Разработаны многочисленные процессы по разложению воды на составные элементы.
Рис. 14 Источники и пути получения водорода
Одним из источников производства водорода является природное топливо: метан, уголь, древесина и т.д. При взаимодействии топлива с парами воды или воздухом образуется синтез-газ - смесь СО и Н2 (рис. 14). Из нее затем выделяется водород.
Другой источник - отходы
сельскохозяйственного
Водород можно получать также электролизом воды, то есть разложением ее под воздействием электрического тока. Электролитический водород является наиболее доступным, но дорогим продуктом. В промышленных и опытно-промышленных установках реализован КПД электролизера ~ 70-80% при плотностях тока менее 1 А/см2, в том числе для электролиза под давлением. Японские исследователи разработали экспериментальные мембранно-электродные блоки с твердополимерным электролитом, обеспечивающие электролиз воды с КПД (по электричеству) > 90% при плотностях тока 3 А/см2.
Очень важным элементом при преобразовании газа, содержащего водород, является очистка газа на палладиевых мембранах. В конечном счете получается чистый водород.
Так как водород – это взрывоопасный газ, то особое место в его использовании занимает вопрос хранения. Самый эффективный из них - это баллоны. Если баллон выдерживает 300 атмосфер, то в нем можно хранить 13% (масс) водорода; 500 атм. - 11%. В США разработаны баллоны, рассчитанные на 700 атм. Они хранят 9% водорода. Удобно хранить водород в сжиженном состоянии. Хорошие способы его хранения - адсорбция водорода в гидридах металлов (порядка 3%) и в интерметаллидах (до 5%). Есть идеи и проводятся уже эксперименты по таким способам хранения водорода, как углеродные наноматериалы, нанотрубки и стеклянные микросферы.
В Европе в конце XIX столетия сжигали топливо, называемое «городской, или синтез-газ» — смесь водорода и монооксида углерода (СО). Несколько стран, включая Бразилию и Германию, кое-где все еще применяют это топливо. Применяли водород и для перемещения по воздуху (дирижабли и воздушные шары), начиная с первого полета во Франции 27 августа 1784 г. Жака Шарля на воздушном шаре, наполненным водородом. В настоящее время многие отрасли промышленности используют водород для очистки нефти и для синтеза аммиака и метанола. Американская космическая система «Шаттл» использовала водород как топливо для блоков разгона. Водород применяется и для запуска ракеты-носителя «Энергия».
Сейчас наблюдается новый