Автор работы: Пользователь скрыл имя, 31 Октября 2013 в 15:03, доклад
Физика XIX века считается классической. Законы классической механики и методы математического анализа демонстрировали свою эффективность. Физический эксперимент, опираясь на измерительную технику, обеспечивал небывалую ранее точность. Физическое знание все в большей мере становилось основой промышленной технологии и техники. В физике изолированные ранее свет, электричество, магнетизм и теплота оказались объединенными в электромагнитную теорию.
Химия XIX столетия
АтомыXIX век характеризуется развитием химической атомистики. Химическая атомистика родилась из слияния старой натурфилософской идеи об атомах с опытными аналитическими данными о химическом количественном составе веществ. Большой вклад в развитие атомистики внесли Жозеф Луи Пруст, Джон Дальтон, Ж.Л. Гей-Люссак, Амедео Авогадро и др.Пруст установил, что постоянство соотношений компонентов наблюдается во многих соединениях. Он сформулировал общее правило, согласно которому все соединения содержат элементы в строго определенных пропорциях вне зависимости от условия получения этих соединений. Это правило называется законом постоянства состава или иногда законом Пруста.Джон Дальтон - первооткрыватель закона кратных отношений и создатель основ атомной теории. Он обнаружил, что два элемента могут соединяться друг с другом в различных соотношениях, но при этом каждая новая комбинация элементов представляет собой новое соединение.В 1803 году Дальтон обобщил результаты своих наблюдений и сформулировал важнейший закон химии - закон кратных отношений. Этот закон полностью отвечает атомистическим представлениям. Дальтон также создал новую версию атомистической теории, опиравшуюся на законы постоянства состава и закон кратных отношений. Эта теория нанесла последний удар по бытовавшим еще представлениям о возможностях взаимных переходов элементов-стихий.Главной заслугой Гей-Люссака в установлении химических закономерностей и особенно в создании атомно - молекулярных представлений было открытие законов простых объемных отношений при взаимодействии газов(если газы образуют соединение, соотношение их объемов всегда представляет собой соотношение кратных чисел). А.Авогадро принадлежит заслуга объяснения объемных законов Гей-Люссака посредством гипотезы, согласно которой одинаковые объемы всех газов содержат одно и то же число мельчайших частиц - молекул. При этом Авогадро удалось строго разграничить понятие о молекулах от представления об атомах.Работы этих ученых внесли существенный вклад в развитие химической атомистики. Они показали, что установление основных химических закономерностей требует не только качественных, но и количественных исследований. Азимов А. Краткая история химии. М.,Мир,1983Веса и символы. Поворотный этап в истории развития химической атомистики связан с именем шведского химика Йенса Якоба Берцелиуса. Он вслед за Дальтоном внес особенно большой вклад в создание атомистической теории.После того, как атомистическая теория была принята, стало возможным изображать вещества в виде молекул, содержащих постоянное число атомов различных элементов. Берцелиус решил, что для изображения элементов достаточно лишь начальных букв названий. Он предложил, чтобы каждому элементу соответствовал особый знак, который был бы одновременно и символом элемента, и символом одиночного атома этого элемента, и с качестве такого знака предложил использовать начальную букву латинского названия элемента. Так появились химические символы, которыми пользуются и поныне.Электролиз. Изучая влияние электрического тока на химические вещества, ученые смогли выделить ряд новых элементов. Очень часто неоткрытые элементы входили в состав оксидов. Чтобы выделить элемент, соединенный с кислородом, последний необходимо было удалить. Под воздействием какого-либо другого элемента, обладающего более сильным сродством к кислороду, атом(ы) кислорода может покинуть первый элемент и присоединиться ко второму. Этот метод оказался эффективным.Английский химик Гемфри Дэви решил, что если вещество нельзя разложить химическим путем, то, возможно, это удастся осуществить под действием электрического тока: ведь таким способом удалось разложить даже молекулу воды. Дэви сконструировал батарею; пропуская ток, который давала эта батарея, через растворы соединений, он пытался выделить неизвестные элементы, но разложил только воду.Необходимо было прежде удалить воду. Однако через твердые вещества ему даже не удалось пропустить ток. Наконец, Дэви догадался расплавить соединения и пропустить ток через расплав. Это оказалось действенным. Электролизом Дэви получил калий, натрий, магний, стронций, барий, кальций.Работы Дэви по электролизу продолжил его помощник и ученик Майкл Фарадей. Ряд электрохимических терминов, введенных Фарадеем, используется и по сей день(электролиз, электролит, электроды, анод, катод, анионы, катионы).
В 1832 году Фарадей установил, что электрохимические процессы характеризуются определенными количественными соотношениями, и сформулировал следующие два закона электролиза:Вес вещества, выделившегося на электроде во время электролиза, пропорционален количеству электричества, пропущенного через раствор.Вес металла, выделенного данным количеством электричества, пропорционален эквивалентному весу этого металла.Органическая химияКрушение витализма. В 1807 году Берцелиус предложил вещества, которые типичны для живой природы, называть органическими, а вещества, характерные для неживой природы -неорганическими. XIX век был временем господства витализма - учения, рассматривающего жизнь как особое явление, подчиняющееся влиянию особых жизненных сил. Сторонники витализма утверждали, что для превращения неорганических веществ в органические требуется какое-то особое воздействие, которое проявляется только внутри живой ткани.В 1828 году Фридрих Вёлер, нагревая цианат аммония, обнаружил образование кристаллов, похожих на мочевину. Тем самым он получил из неорганического вещества органическое.Открытие Вёлера способствовало низвержению витализма и вдохновило химиков на попытки синтеза органического вещества.В 1845 году Адольф Вильгельм Герман Кольбе успешно синтезировал уксусную кислоту; в 50-е годы XIX века Пьер Эжен Марселен Бертло синтезировал метиловый и этиловый спирты, метан, бензол, ацетилен; в 1812 году Кирхгофу удалось получить глюкозу; в 1820 году Анри Браконно получил глицин - первую аминокислоту; в 1809 Мишель Эжен Шеврель выделил жирные кислоты.В 1854 году Бертло, нагревая глицерин со стеариновой кислотой, получил тристеарин, который оказался идентичным тристеарину, полученному из природных жиров. Он был самым сложным из синтезированных к тому времени аналогов природных продуктов.Бертло сделал еще более важный шаг. Вместо стеариновой кислоты он взял кислоты, похожие на нее, но полученные не из природных жиров, и также нагрел их с глицерином. В результате Бертло получил соединения, очень похожие на обычные жиры, но несколько отличающиеся от любого из природных жиров.Этот синтез показал, что химик не только способен синтезировать аналоги природных продуктов, он в состоянии сделать большее. Именно с синтезом аналогов природных продуктов связаны самые крупные достижения органической химии второй половины XIX века.К середине XIX века стало непопулярным причислять то или иное соединение к органическим или неорганическим, исходя лишь из того, является или не является оно продуктом живой ткани. Тем не менее деление соединений на органические и неорганические имело смысл. Свойства соединений этих классов настолько различаются, что даже приемы работы химика-органика и химика-неорганика совершенно различны.Немецкий химик Фридрих Август Кекуле фон Страдонитц сделал верный вывод. В учебнике, опубликованном в 1861 году Кекуле определил органическую химию как химию соединений углерода. Правда, несколько соединений углерода скорее следует считать неорганическими.Изомеры и радикалы. В первые десятилетия XIX века считалось, что для каждого соединения характерна своя собственная эмпирическая формула и что у двух различных соединений она не может быть одинаковой.У органических соединений в то время было невозможно установить точную эмпирическую формулу. Однако основоположники органического анализа (Ю.Либих, Ж.Б.А. Дюма, Ф.Вёлер) в процессе своих исследований получили такие результаты, которые пошатнули веру в важность эмпирической формулы. Либих и Вёлер изучали фульминат и цианат серебра соответственно; и хотя эмпирические формулы этих веществ одинаковы, их свойства различны. Вскоре Берцелиус открыл виноградную и винную кислоты, которые обладают различными свойствами, но описываются одной и той же эмпирической формулой. Поскольку соотношения элементов в этих различных соединениях было одинаковым, Берцелиус предложил назвать такие соединения изомерами.Казалось очевидным, что, если две молекулы построены из одинакового числа одних и тех же атомов и все же обладают различными свойствами, различие коренится в способе расположения атомов внутри молекулы. При большом количестве атомов число возможных вариантов расположения возрастает настолько, что трудно становится решить, какому соединению соответствует какое расположение.Поэтому проблему строения молекул можно было бы почти сразу отвергнуть как нерешаемую, если бы не появилась возможность упростить ее.Гей-Люссак и Тенар, работая над цианидом водорода, обнаружили, сто группа CN (цианидная группа) может переходить от соединения к соединению, не разлагаясь на отдельные атомы углерода и азота. Группа из двух или более атомов, способная переходить без изменения из одной молекулы в другую, была названа радикалом.Короче говоря, становилось ясно, что открыть тайну строения больших молекул можно, лишь установив строение определенного числа различных радикалов. Тогда не составит большого труда построить из радикалов молекулы.Строение молекулВ 1852 году английский химик Эдуард Франкланд выдвинул теорию, которая позднее стала известна как теория валентности, согласно которой каждый атом обладает определенной способностью к насыщению(или валентностью). Прежде всего с введением понятия «валентность» удалось уяснить различие между атомным весом и эквивалентным весом элементов. Даже в середине XIX века многие химики еще путали эти понятия.Эквивалентный вес атома равен его атомному весу, деленному на его валентность.Теория валентности сыграла важнейшую роль в развитии теории химии и в органической химии в особенности. После того, как была построена первая органическая молекула, стало совершенно ясно, почему органические молекулы, как правило, значительно больше и сложнее, чем неорганические.Согласно представлениям Кекуле, углеродные атомы могут соединяться друг с другом с помощью одной или нескольких из четырех своих валентных связей, образуя длинные цепи. По-видимому, никакие другие атомы не обладают этой замечательной способностью в той мере, в какой обладает ею углерод.Полезность структурных формул была настолько очевидной, что многие химики-органики приняли их сразу. Они признали полностью устаревшими все попытки изображать органические молекулы как структуры, построенные из радикалов. В результате было признано необходимым, записывая формулу соединения, показывать его атомную структуру.Русский химик Александр Михайлович Бутлеров использовал эту новую систему структурных формул в разработанной им теории строения органических соединений. В 60-х годах XIX столетия он показал, как с помощью структурных формул можно наглядно объяснить причины существования изомеров.Основные идеи теории химического строения Бутлеров изложил в докладе «О химическом строении вещества», прочитанном в химической секции Съезда немецких естествоиспытателей и врачей в Шпейере (сентябрь, 1861). Основы этой теории сформулированы таким образом:1) Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).
2) Химическое строение
можно устанавливать Физическая химияОткрытия, происходившие в физике XIX столетия, в частности, в термодинамике, не могли не повлиять на развитие химии. Ведь в конечном итоге основными источниками теплоты в XIX веке (кроме Солнца) были химические реакции: горение дерева, угля, нефти. Химикам было также известно, что практически все химические реакции сопровождаются тем или иным тепловым(а иногда и световым) эффектом.В 1840 году после опубликования работ русского химика Германа Ивановича Гесса граница между миром физики и химии была разрушена. Гесс показал, что количество теплоты, получаемой или поглощаемой при переходе от одного вещества к другому, всегда одинаково и не зависит от того, с помощью какой реакции или сколькими этапами осуществлялся переход. Благодаря этому обобщению (закон Гесса) Гесса считают основателем термохимии. Исходя из закона Гесса, закон сохранения энергии равно применим и к химическим, и к физическим процессам.В 1850 году Уильямсон тщательно изучил обратимые химические реакции. Работа Уильямсона ознаменовала начало изучения химической кинетики - области химии, изучающей скорости химических реакций. Уильямсон ясно показал, что самопроизвольный характер химической реакции в ряде случаев определяет не просто выделение теплоты, а нечто большее.В 1863 году Като Гульдберг и Петер Вааге нашли константу химического равновесия, а также закон действия масс. Они полагали, что направление реакции определяется не просто массой отдельных веществ, а скорее массой отдельных веществ, приходящейся на данный объем реагирующей смеси, другими словами - концентрацией веществ.Тем временем американский физик Джозайя Гиббс Уиллард начал систематическое изучение термодинамики химических реакций. Он ввел понятие свободная энергия, и объяснил суть закона действия масс. Скорость, с которой меняется свободная энергия при изменении концентрации отдельного вещества, называется химическим потенциалом системы, и Гиббсу удалось показать, что именно химический потенциал является «движущей силой» химических реакций. Химическая реакция идет самопроизвольно от точки с высоким химическим потенциалом, подобно тому как теплота самопроизвольно передается от точки с высокой температурой к точке с низкой температурой. Работы Гиббса составили фундамент современной химической термодинамики. Причем Гиббс сделал так много, что его последователи по существу лишь развивали его идеи.Катализ. Выдающийся немецкий ученый Фридрих Вильгельм Оствальд занимался изучением катализа. Катализатор, утверждал он, образует с исходным веществом промежуточное соединение, которое распадается на конечные продукты реакции. При распаде промежуточного соединения катализатор высвобождается. Таким образом, катализатор ускоряет реакцию, но сам при этом не расходуется. Кроме того, поскольку молекулы катализатора используются снова и снова, для ускорения реакции большого количества веществ достаточно небольшого количества катализатора.Этот взгляд на катализ сохраняется и сегодня. Он помог объяснить механизм действия ферментов, управляющих химическими реакциями в живых тканях.В 1888 году А. Ле Шателье открыл правило, получившее название принципа Ле Шателье. Согласно этому правилу, любое смещение системы в таком направлении, которое уменьшает первоначальное изменение. Как оказалось, химическая термодинамика Гиббса четко объясняла принцип Ле Шателье.Новые исследования в области физической химии показали, что химические реакции связаны не только с теплом, как таковым, а скорее с энергией вообще.В XIX веке начинает развиваться фотохимия - область химии, изучающая индуцируемые светом реакции. Среди ее достижений изобретение фотографии, использование света как катализатора и последующие фотохимические цепные реакции и т.д.Ионная диссоциация. Крупнейшим физико - химиком на рубеже XIX XX вв. наряду с Вант-Гоффом и Оствальдом был шведский ученый Сванте Август Аррениус. Еще будучи студентом, он заинтересовался электролитами, т.е. растворами, способными пропускать электрический ток. Аррениус пришел к мысли, что при растворении в растворителях, подобных воде, определенная часть молекул распадается на отдельные атомы. Более того, поскольку эти распавшиеся молекулы проводят электрический ток, Аррениус предположил, что молекулы распадаются не на обычные атомы, а на атомы, несущие электрический заряд. Это составило основу теории ионной диссоциации. С помощью этой теории ионной диссоциации Аррениус объяснил многие электро- химические явления. В 1889 году Аррениус выдвинул другую плодотворную идею. Он указал, что молекулы, сталкиваясь, не реагируют, если не обладают определенным минимумом энергии, иначе говоря, энергией активации. При малой энергии активации реакции проходят быстро и беспрепятственно, при высокой энергии активации реакция может протекать с бесконечно малой скоростью. Синтетическая органическая химия Первая половина XIX века ознаменовалась развитием новой области химии - синтетической органической химии. Химики начали соединять в цепи органические молекулы. Уильям Генри Перкин пытался получить хинин - ценное лекарственное средство против малярии. Однажды обработав анилин бихроматом калия, разочарованный результатом Перкин уже собрался выбросить полученную массу, как вдруг заметил, что она приобрела пурпурный оттенок. Перкин добавил спирт и извлек из реакционной смеси вещество, окрасившее спирт в великолепный пурпурный цвет.Перкин понял, что у него в руках краситель. Впоследствии он первым организовал промышленное производство синтетического красителя и быстро разбогател.Несколько лет спустя после поразительного успеха Перкина химики познакомились со структурными формулами органических соединений. Эти формулы могли помочь подобрать методы, позволяющие синтезировать новые органические соединения не случайно, а уже целенаправленно. Так в 1867г. Адольф Байер синтезировал индиго, в 1868г. Карл Гребе синтезировал важный природный краситель - ализарин.Вслед за Перкином химики начали синтезировать соединения все возрастающей сложности. Синтез обычно позволял установить молекулярное строение, что всегда представляло огромный теоретический, а иногда и практический интерес.Эти и подобные им достижения заложили основы теории и технологии прикладной химии, благодаря успехам которой наша жизнь преобразилась столь значительным образом и продолжает преображаться в еще более ускоренном темпе.Шотландский химик Томас Грэхем изучал диффузию, в частности диффузию растворенных веществ. Он обнаружил, что растворы веществ, подобных соли, сахару проходят через разделяющую перегородку из пергаментной бумаги. Соединения, способные проходить через поры пергамента Грэхем назвал кристаллоидами. Соединения другой группы, не способные проходить через поры пергамента, он назвал коллоидами. Наука о гигантских молекулах стала впоследствии важным разделом коллоидной химии, которой Грэхем положил начало.Взрывчатые вещества. Молекулы-гиганты не избежали преобразующей руки химика. В 1845 году Х.Ф.Шенбайн, случайно превратил целлюлозу в нитроцеллюлозу. Нитрогруппы послужили внутренним источником кислорода, и при нагревании целлюлоза сразу же полностью окислилась.Шенбайн понял важность сделанного им открытия. На основе нитроцеллюлозы (нитроклетчатки) можно было получить «бездымный порох».Однако наладить производство нитроклетчатки для военных целей долгое время не удавалось: фабрики, как правило, взрывались. Только в 1891г. Дьюару и английскому химику Фредерику Аугустусу Абелю удалось получить безопасную смесь, назвав ее кордитом.В состав кордита кроме нитроклетчатки входит также нитроглицерин (мощное взрывчатое вещество), который был получен в 1847г. итальянским химиком Асканио Собреро.Производством нитроглицерина занялось семейство шведского изобретателя Альфреда Бернарда Нобеля (1833--1896). Когда в результате взрыва погиб брат Нобеля, он сосредоточил свои усилия на «усмирении» этого взрывчатого вещества. В 1866 г. Нобель обнаружил, что кизельгур может впитывать значительные количества нитроглицерина. Пропитанный нитроглицерином кизельгур можно было формовать в брикеты. Такие брикеты были совершенно безопасны в обращении, хотя пропитывающий кизельгур нитроглицерин сохранял свою разрушительную силу. Нобель назвал полученную им смесь динамитом.Получение новых и более мощных по сравнению с черным порохом взрывчатых веществ в конце XIX в. положило начало гонке вооружений. Его применение для военных целей, как и разработка отравляющих газов во время первой мировой войны, отчетливо продемонстрировало, что задачи науки можно извратить и заставить ее служить целям разрушения. Наука, которая до конца XIX в. казалась средством создания на земле утопии, стала служить уничтожению.Однако существует много направлений, позволяющих использовать молекулы-гиганты в мирных целях. Так, если полностью нитрованная целлюлоза - это взрывчатое вещество и может применяться только как таковое, то частично нитрованная целлюлоза (пироксилин) более безопасна в обращении, и ее можно применять не только в военных целях (производство пластмасс, различных волокон).Одним из главных источников основных органических соединений, необходимых для производства новых синтетических продуктов, является нефть. Эта жидкость известна с античных времен, но чтобы использовать ее в больших количествах, необходимо было открыть способ выкачивания нефти из обширных подземных месторождений. Американский изобретатель Эдвин Лаурентин Дрейк первым в 1859 году начал бурить нефтяные скважины. Неорганическая химия Новая металлургия. Хотя может показаться, что XIX век, особенно его вторая половина, был веком органической химии, неорганическая химия продолжала развиваться. Самые большие успехи в области прикладной неорганической химии связаны с получением металлов и прежде всего стали, производство которой было и остается наиболее важной статьей экономики любой промышленно развитой страны.Сталь начали получать и широко использовать еще три тысячелетия назад, но только в середине XIX века был разработан способ, который обеспечивал массовое производство литой стали. Большая заслуга в этом принадлежит Генри Бессемеру.Бессемер нашел способ удалить избыточный углерод из чугуна - пропустить через расплавленный металл струю воздуха. Металл при этом не охлаждался и не затвердевал; наоборот, в результате реакции углерода с кислородом выделялось тепло, и температура расплава повышалась. Прекращая в соответствующий момент подачу воздуха, Бессемер смог получить сталь.В 1856 г. Бессемер опубликовал сообщение об изобретенном им конвертере. В результате сталь стала дешевой, и железный век уступил дорогу веку стальному. Значение стали трудно переоценить. Сталь -- это современные небоскребы и подвесные мосты, сталь -- это рельсы для поездов, сталь -- это мощные боевые корабли и всесокрушающая артиллерия.Впоследствии металлурги пытались улучшить свойства стали, добавляя в нее различные компоненты. Английский металлург Роберт Эббот Хэдфилд ввел в сталь марганец(12%) и она стала намного тверже, чем исходный металл. Хэдфилд запатентовал марганцевую сталь в 1882 году и с этого момента началось победное шествие легированных сталей.Добавляя в сталь хром, молибден, ванадий, вольфрам и ниобий, металлурги получили богатый спектр легированных сталей, обладающих самыми различными свойствами.В это же время начали находить применение и новые металлы, в частности алюминий -- самый распространенный металл. Однако в природных соединениях он прочно связан с другими элементами. Лишь в 1855г. французский химик Анри Этьен Сен-Клер Де-вилль разработал приемлемый способ получения достаточных количеств довольно чистого алюминия. Однако и после этого стоимость его намного превышала стоимость стали; так, достаточно сказать, что из алюминия были сделаны такие «престижные» предметы, как погремушка сыну Наполеона III и головной убор статуи Вашингтона.В 1886г. молодой американский студент-химик Чарльз Мартин Холл открыл, что оксид алюминия (глинозем) можно растворить в расплавленном минерале криолите. А получив раствор оксида, можно путем электролиза выделить и сам алюминий. В том же году французский металлург Поль Луи Туссен Эру (1863--1914) разработал по сути тот же метод получения алюминия. Метод Холла --Эру сделал алюминий настолько дешевым, что из него стали изготавливать даже кухонную посуду.Наиболее ценное свойство алюминия -- его легкость (алюминий в 3 раза легче стали). Именно по этой причине он так широко используется в авиационной промышленности. В этих же целях потребляются и большие количества магния, циркония и титана, так как перспективы их использования весьма велики. Достижения биологии XIX века Наиболее значимыми событиями первой половины XIX века стали становление палеонтологии и биологических основ стратиграфии, возникновение клеточной теории, формирование сравнительной анатомии и сравнительной эмбриологии. Центральными событиями второй половины XIX века стали публикация «Происхождения видов» Чарлза Дарвина и распространение эволюционного подхода во многих биологических дисциплинах.Клеточная теорияКлеточная теория была сформулирована в 1839г. немецким зоологом и физиологом Т. Шванном. Согласно этой теории, всем организмам присуще клеточное строение. Клеточная теория утверждала единство животного и растительного мира, наличие единого элемента тела живого организма -- клетки. Как и всякое крупное научное обобщение, клеточная теория не возникла внезапно: ей предшествовали отдельные открытия различных исследователей.В начале XIX в. предпринимались попытки изучения внутреннего содержимого клетки. В 1825г. чешский ученый Я. Пуркине открыл ядро в яйцеклетке птиц. В 1831г. английский ботаник Р. Броун впервые описал ядро в клетках растений, а в 1833г. он пришел к выводу, что ядро является обязательной частью растительной клетки. Таким образом, в это время меняется представление о строении клетки: главным в ее организации стали считать не клеточную стенку, а содержимое.Наиболее близко к формулировке клеточной теории подошел немецкий ботаник М. Шлейден, который установил, что тело растений состоит из клеток.Многочисленные наблюдения относительно строения клетки, обобщение накопленных данных позволили Т. Шванну в 1839 г. сделать ряд выводов, которые впоследствии назвали клеточной теорией. Ученый показал, что все живые организмы состоят из клеток, что клетки растений и животных принципиально схожи между собой.Клеточная теория включает следующие основные положения:1) Клетка -- элементарная единица живого, способная к самообновлению, саморегуляции и самовоспроизведению и являющаяся единицей строения, функционирования и развития всех живых организмов.2) Клетки всех живых организмов сходны по строению, химическому составу и основным проявлениям жизнедеятельности.3) Размножение клеток происходит путем деления исходной материнской клетки.4) В многоклеточном организме клетки специализируются по функциям и образуют ткани, из которых построены органы и их системы, связанные между собой межклеточными, гуморальными и нервными формами регуляции.Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства живой природы. Клеточная теория оказала значительное влияние на развитие биологии как науки, послужила фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Она позволила создать основы для понимания жизни, индивидуального развития организмов, для объяснения эволюционной связи между ними. Основные положения клеточной теории сохранили свое значение и сегодня, хотя более чем за сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клетки. Эволюционная теория Ч. Дарвина Переворот в науке произвела
книга великого английского ученого- Заключение XIX век стал переломным для всего человечества. Ни одна нация, ни одно государство не моглиигнорировать всё ускоряющийся процесс, который назовут впоследствии "научно-техническим прогрессом". Открытия в области физики, химии, биологии, медицины перевернули представления человека о мире. Понятно, что столь значительные открытия и нововведения повлияли не только на изменение мировоззрения нескольких поколений, но и на весь уклад их жизни.XIX век по праву можно назвать веком выдающихся научных открытий. Создание эволюционной теории Дарвина привнесло и в биологию, также как в механику и физику, идеи движения и развития.XIX век - это век вероятностного видения Природы, эволюционирующего мира, замеченного Больцманом и Дарвином. Революционные перемены в естествознании не ограничились этими открытиями. Вселенная Ньютона - Вселенная твердой материи, состоящей из атомов, неделимых частиц. Знаменитые эксперименты Фарадея, теоретические работы Максвелла по электромагнетизму привели к обоснованию полевой формы материального мира, где материя не имеет четких границ, очертаний.Именно в это время, безусловно, увеличивается роль науки, без неё стало невозможно развитие производства. Научные открытия внедряются в промышленность и сельское хозяйство. Железные дороги, электрическое освещение, телефон, телеграф и многое другое коренным образом меняют жизнь человека. Человек встает на принципиально новый уровень жизни. Основные концепции в астрономии.
|