Автор работы: Пользователь скрыл имя, 11 Апреля 2014 в 16:16, контрольная работа
Записанные соотношения могут быть записаны и для любой другой функции, которая отличается от φ на константу: . Таким образом, уравнение потенциала определяется с точностью до константы. Геометрическое место точек с одинаковым значением φ образуют эквипотенциальные поверхности, уравнения которых: . Так как , следовательно вектор U расположен по перпендикулярам в любой точке эквипотенциальной поверхности. Так как вектор U касателен к линии тока, то линии тока перпендикулярны эквипотенциальной поверхности.
Вариант №25
Основные понятия и определения потенциальных течений
Потенциальные течения – это течения, у которых во всем потоке, следовательно существует функция φ, называемая потенциалом, зависитφ(х,у,z,t) и связана с составляющими U соотношениями:
то есть
Записанные соотношения могут быть записаны и для любой другой функции, которая отличается от φ на константу: . Таким образом, уравнение потенциала определяется с точностью до константы. Геометрическое место точек с одинаковым значением φ образуют эквипотенциальные поверхности, уравнения которых: . Так как , следовательно вектор U расположен по перпендикулярам в любой точке эквипотенциальной поверхности. Так как вектор U касателен к линии тока, то линии тока перпендикулярны эквипотенциальной поверхности.
Рассмотрим стационарное плоское течение, то есть , тогда
и .
Уравнение сплошности имеет вид:
Таким образом, потенциал U удовлетворяет уравнению Лапласа, следовательно является гармонической функцией.
Введем в рассмотрение функцию ψ, связанную с составляющими U уравнениями:
и
Функция ψ удовлетворяет уравнению сплошности, т.к.
ψ – функция тока, она также определяется с точностью до постоянной.
Уравнение называется уравнением линии тока.
В плоских течениях эквипотенциальные поверхности дают проекции на плоскость (х,у) в виде линии, поэтому часто в задачах рассматриваются эквипотенциальные линии которые перпендикулярны линии тока.
В потенциальном потоке , в плоском течении
функция тока ψ гармоническая
Сравнение потенциала φ и ψ позволяет записать:
-условие Коши-Римана.
Информация о работе Основные понятия и определения потенциальных течений