Автор работы: Пользователь скрыл имя, 15 Декабря 2013 в 16:11, реферат
Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Другая обмотка, к которой присоединяют нагрузку, т.е. приборы и устройства, потребляющие электроэнергию, называется вторичной. Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Другая обмотка, к которой присоединяют нагрузку, т.е. приборы и устройства, потребляющие электроэнергию, называется вторичной. Трансформатор на холостом ходу Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке.
Передача электрической
Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Другая обмотка, к которой присоединяют нагрузку, т.е. приборы и устройства, потребляющие электроэнергию, называется вторичной. Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Другая обмотка, к которой присоединяют нагрузку, т.е. приборы и устройства, потребляющие электроэнергию, называется вторичной.
Трансформатор на холостом ходу Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке .
Мгновенное значение ЭДС индукции e в любом витке первичной или вторичной обмотки одинаково. Согласно закону Фарадея оно определяется формулой где Ф’ – производная потока магнитной индукции по времени .
Если Ф = Фm cos ωt, то Ф’ = -ωФm sin ωt. Следовательно, e = ωФm sin ωt, или e = Εm sin ωt, где Εm = ωФm – амплитуда ЭДС в одном витке .
В первичной обмотке, имеющей N1 витков, полная ЭДС индукции e1 равна N1e. Во вторичной обмотке полная ЭДС индукции e2 равна N2e (N2 – число витков этой обмотки). Отсюда следует, что Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах катушки приблизительно равен модулю ЭДС индукции. При разомкнутой вторичной обмотке трансформатора ток в ней не течет и имеет место соотношение мгновенные значения ЭДС e1 и e2 изменяются синфазно, поэтому их отношение можно заменить отношением действующих знаний E1 и E2 этих ЭДС или, учитывая равенства |u1| ≈ |e1| и |u2| = |e2|, отношением действующих значений напряжений U1 и U2: U1 E1 N1 U2 E2 N2 – ≈ – = – = K.
Величина K называется коэффициентом трансформации. При K > 1 трансформатор является понижающим, а при K < 1 – повышающим .
Работа нагруженного трансформатора. Если к концам вторичной обмотки присоединить цепь, потребляющую электроэнергию, или, как говорят, нагрузить трансформатор, то сила тока во вторичной обмотке уже не будет равна нулю. Появившийся ток создает в сердечнике свой переменный магнитный поток, который уменьшает изменения магнитного потока в сердечнике.
Но уменьшение амплитуды колебаний результирующего магнитного потока должно, в свою очередь, уменьшить ЭДС индукции в первичной обмотке. Однако это невозможно, так как |u1| ≈ |e1|. Поэтому при замыкании цепи вторичной обмотки автоматически увеличивается сила тока в первичной обмотке. Его амплитуда возрастает таким образом, чтобы восстановить прежнее значение амплитуды колебаний результирующего магнитного потока.
Увеличение силы тока в цепи первичной обмотки происходит в соответствии с законом сохранения энергии: отдача электроэнергии в цепь, присоединенную ко вторичной обмотке трансформатора, сопровождается потреблением от сети такой же энергии первичной обмоткой. Мощность в первичной цепи при нагрузке трансформатора, близкой к номинальной, приблизительно равна мощности во вторичной цепи: это означает, что, повышая с помощью трансформатора напряжение в несколько раз, мы во столько же раз уменьшаем силу тока (и наоборот).
Передача электроэнергии .
Потребители электроэнергии имеются повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливо- и гидроресурсов. Электроэнергию не удается консервировать в больших масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.
Передача энергии связана с заметными потерями. Дело в том, что электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля-Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой где R – сопротивление линии.
Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Так, в высоковольтной линии передачи Волжская ГЭС – Москва и некоторых других используют напряжение 500 кВ. Между тем генераторы переменного тока строят на напряжения, не превышающие 16-20 кВ.
Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов. Поэтому на крупных электростанциях ставят повышающие трансформаторы. Для непосредственного использования электроэнергии в двигателях электропривода станков, в осветительной сети и для других целей напряжение на концах линии нужно понизить. Это достигается с помощью понижающих трансформаторов.
При очень высоком напряжении между проводами начинается разряд, приводящий к потерям энергии. Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного сечения провода потери энергии вследствие разряда были незначительными. При очень высоком напряжении между проводами начинается разряд, приводящий к потерям энергии. Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного сечения провода потери энергии вследствие разряда были незначительными.
Информация о работе Передача электрической энергии на расстояние