Период становления физики как науки. Физика И.Ньютона

Автор работы: Пользователь скрыл имя, 27 Февраля 2012 в 20:45, курсовая работа

Описание работы

Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.

Содержание работы

Введение 2
1. Основные периоды и этапы в развитии физики. 3
2 Предыстория физики(от древнейших времен до ХVII в.). 6
2.1 Эпоха античности (VI в. до н. э.– V в. н. э.). 6
2.1.1 Физика как наука того времени. 6
2.1.2 Совершенные открытия. 6-8
2.1.3 Эксперимент Эратосфена Киренского 8
2.1.4 Камера-обскура 9-10
2.2 Средние века (VI – ХIV вв.). 11
2.2.1 Физика как наука того времени. 11
2.2.2 Совершенные открытия. 12-14
2.2.3 Физика арабского средневековья 14-16
2.3 Эпоха Возрождения (ХV – ХVI вв.). 16
2.3.1 Физика как наука того времени. 16-17
2.3.2 Совершенные открытия. 17-20
2.3.3 Эксперимент Галилео Галилея 20
2.3.4 Другой эксперимент Галилео Галилея 21
3 Период становления физики как науки. Физика И.Ньютона. 22
3.1 Физика как наука того времени. 22
3.2 Совершенные открытия. 22-29
3.3 Эксперимент Исаака Ньютон 29-30
3.4 Эксперимент Генри Кавендиша 30-32
Заключение. 33-34

Файлы: 1 файл

Коломенский государственный педагогический институт.docx

— 253.35 Кб (Скачать файл)

Фрагмент пейзажа Яна  Вермеера Дельфтского, созданного при  помощи камеры-обскуры.

 

 

 

 

 

 

Судя по всему, первым использовал камеру-обскуру для  зарисовок с натуры Леонардо да Винчи. Он также подробно описал её в своём «Трактате о живописи». В 1686 году Йоганнес Цан спроектировал портативную камеру-обскуру, оснащённую зеркалом, расположенным под углом 45° и проецировавшим изображение на матовую горизонтальную пластину, что позволило художникам переносить пейзажи на бумагу.

Многие художники (например Вермеер) использовали камеру-обскуру для создания своих произведений — пейзажей, портретов, бытовых зарисовок. Камеры-обскуры тех времён представляли собой большие ящики с системой зеркал для отклонения света. Часто вместо простого отверстия использовался объектив (обычно одиночная линза), что позволяло значительно увеличить яркость и резкость изображения. С развитием оптики объективы усложнялись, а после изобретения светочувствительных материалов камеры-обскуры стали фотоаппаратами.

Однако и в настоящее  время некоторые фотографы используют так называемые «стено́пы» — фотоаппараты с маленьким отверстием вместо объектива. Изображения, полученные при помощи таких камер, отличаются своеобразным мягким рисунком, идеальной линейной перспективой и большой глубиной резкости.

В дофотографическую  эру применялась также камера-люцида, изобретённая в 1807 г. английским физиком Волластоном — четырёхгранная призма, при определённом угле зрения совмещающая мнимое изображение пейзажа с листом бумаги, на котором делается зарисовка.

 

2.2 Средние века (VI – ХIV вв.).

2.2.1 Физика  как наука того времени.

После Герона и Птолемея наступил упадок физики. Вместо оригинальных научных исследований мы видим компиляции, повторения и псевдонаучные пережевывания.

Римляне из греческой  науки периода ее упадка в основном усвоили те моменты, которые могли  иметь прямое практическое применение, и широко использовали их, например, в строительстве.

Вместе с тем в  римской империи было создано  большое число научных энциклопедий. Это в течение многих веков было единственным источником сведений о греческой науке. Но с распадом империи вследствие нашествия варваров традиции греческой школы были надолго забыты на Западе.

На Востоке культурные традиции греческой школы никогда не исчезали, хотя и были ослаблены. Они поддерживались в Византийской империи, а затем были переняты арабами, а от них пришли на Запад уже приблизительно в 13 веке.

 

2.2.2 Совершенные открытия.

VI в. (конец) 

– Первое упоминание о  механических часах, Изобретение их приписывают Пацификусу из Вероны (нач. IХ в.). Достоверно известно, что простейшие механические часы (башенные) построены в 1335 в Милане.

ХI в.

– Исследования Альхазена  по физиологической оптике. На смену  теории зрительных лучей древнегреческих мыслителей приходит теория зрения Альхазена, согласно которой зрительные изображения тел создаются лучами, исходящими от видимых тел. Попадая в глаз, эти лучи вызывают зрительные ощущения. Исследовал явления отражения и преломления света, усовершенствовал формулировку закона отражения, впервые установив, что нормаль к поверхности зеркала, падающий и отраженный лучи лежат в одной плоскости. Изучал отражение световых лучей от вогнутого сферического зеркала. Его труд “Сокровище оптики” дошел до нас в латинском переводе, опубликованном в 1572. 
– Разложение скорости брошенного тела на две составляющие – параллельную и перпендикулярную плоскости (Альхазен). 
– Переоткрытие арабами свойств ориентации магнитной иглы (стрелки), появление компаса (свойство магнитной иглы ориентироваться в определенном направлении было известно китайцам еще в 2700 г. до н. э.). В Европе компас появился в ХII в. 
– Ал-Бируни разработал с помощью отливного сосуда способ определения объемов тел неправильной формы, который применял для нахождения удельного веса чистых металлов, некоторых сплавов и драгоценных камней. 
– Омар Хайям усовершенствовал способы взвешивания и определения удельного веса (его трактат “Весы мудростей или об абсолютных водяных весах”).

1121

– Альгацини написал  трактат “Книга о весах мудрости” – своеобразный курс средневековой физики. Он содержал таблицы удельных весов твердых и жидких тел (для 50 веществ), в нем указывалось также, что закон Архимеда применим и для воздуха, что удельный вес воды зависит от температуры, вес тела пропорционален количеству вещества, содержащегося в нем, скорость измеряется отношением пройденного пути ко времени, описано применение ареометра, приводятся описания четырех конструкций применявшихся в то время весов, снабженные схематическими чертежами.

1269

– Появился первый рукописный трактат по магнетизму “Послание  о магните” П. Перегрино, или Пьера  из Марикура (опубликован в 1558), где  дано описание свойств магнитного камня, методов определения полярности магнита, взаимодействия полюсов, намагничивание прикосновением, явление магнитной индукции, некоторые технические применения магнитов и т. п.

1271

– Появился в рукописи трактат по оптике Эразма Вителлия (Вителло), получивший широкое распространение  в средние века (напечатан в 1533). В нем наряду с изложением того, что сделали Евклид и Альхазен, содержится закон обратимости световых лучей при преломлении, доказывается факт, что параболические зеркала имеют один фокус, подробно исследуется радуга.

ХIII в.

– Р. Бэкон измеряет фокусное расстояние сферического зеркала (ему известен главный фокус вогнутого зеркала) и открывает сферическую аберрацию, выдвигает идею зрительной трубы, один из первых рассматривает линзы как научные приборы, основу познания усматривает в опыте. Является предвестником экспериментального метода.

1310

– Т. Теотоникус дает объяснение радуги, не объясняя, однако, порядка  цветов. Первое правильное объяснение радуги приписывают Ал-Фаризи (примерно 1280).

ХIV в. (начало)

– Введены понятия  мгновенной скорости и ускорения (У. Гейтсбери). Он же впервые рассмотрел вопросы об ускорении и замедлении движения и о пути, пройденном при равномерно ускоренном движении.

ХIV в.

– Исследование относительного перемещения, получает развитие теория “движущей силы” (теория “импетуса”) (Ж. Буридан, Н. Орем, А. Саксонский), используется понятие “количество материи” (Ж. Буридан). 
– А. Саксонский ввел деление движений на поступательное и вращательное, равномерное и переменное. 
– Введено понятие равномерно-переменного движения, угловой скорости. 
– Н. Орем дал графическое изображение движения, введя метод двумерных координат (это сделал также Дж. ди Казалис в 1346), и установил закон равномерно-переменного движения, связывающий путь, пройденный телом, со временем. С этого времени в научных трудах появляются графики скорости движения, и кинематические доказательства приобретают геометрический характер.

2.2.3 Физика арабского средневековья

Арабы в средние века создали огромную империю. В начальный  период ее становления господствовало презрительное недоверие к греческой культуре. Но с середины 8 века наступает пересмотр этого отношения. На первых этапах ассимиляции культур на арабский язык с греческого и сирийского были переведены труды греческих ученых. В этот же период основываются школы по образцу греческих в новых столицах - Дамаске и Багдаде, где началось самостоятельное развитие арабской науки. Здесь наряду с изучением теологических проблем развивались и естественнонаучные исследования.

Вследствие своих греческих  корней интерес арабских ученых в  основном был обращен к исследованиям в области механики и оптики. В механике арабы следовали Аристотелю и не внесли значительных новых идей в эту область, за исключением гидростатики. Здесь в 10 веке были введены в употребление гидростатические весы для определения удельного веса, а также объяснено действие артезианских колодцев на основе принципа сообщающихся сосудов.

Следует отметить заслуги  Мухаммеда ибн Ахмеда аль-Бируни (973-1048), который проводил эксперименты по определению удельных весов с  помощью специального отливного сосуда. Бируни был энциклопедистом, широко известны его исследования по астрономии и географии, в частности, определение угла наклона эклептики к экватору, радиуса Земли и т.п. Также широко известна работа среднеазиатского ученого 12 века Аль Хазини "Книга о весах мудрости", в которой подробно описаны применение закона Архимеда и специально сконструированные весы. При этом обсуждается закон Архимеда для воздуха, зависимость удельного веса воды от температуры, пропорциональность веса количеству вещества, содержащегося в теле.

Наиболее ярким арабским физиком-оптиком был Альхазен, работавший в Египте в начале 11 века.

Альхазен (Ибн Аль-Хайтан, Абу Али Хайсама) (965-1039) - арабский физик, астроном, математик, медик, философ. Родился в Басре. Жил и работал в Каире.

Основные результаты оптических исследований изложены в  трактате, переведенном в 12 веке на латинский  язык, где выдвинул свою теорию зрения, описал работы с камерой-обскурой и  по отражению в зеркалах различных  видов, высказал идею о конечности скорости света.

В своей теории зрения Альхазен основывался на анатомическом  описании глаза, известном по античным исследованиям. Но он отказался от представлений  древнегреческих ученых, что световые лучи испускаются глазом. Несостоятельность  этого он показывает с помощью ряда опытов физико-физиологического характера, например, ослеплением при попадании на глаза солнечного света. По Альхазену зрительный образ формируется при воздействии на глаз естественного света и цветовых лучей. Под естественным светом он понимает белый солнечный свет, а под цветовыми лучами - свет, отраженный от цветных предметов.

Главное же принципиальное открытие Альхазена состоит в  утверждении того, что каждой точке  наблюдаемого предмета соответствует  некоторая воспринимающая точка глаза. Если у всех греческих физиков зрение рассматривается как ощущение образа, восприятие всего наблюдаемого тела разом, то по Альхазену из каждой точки предмета исходит бесконечное число лучей и в зрачок тоже попадает бесконечное число лучей. При этом Альхазен основывает свои суждения не только на геометрических построениях, но и на базе описанных им опытов с камерой-обскурой. Помимо работ по теории зрения известны труды Альхазена по экспериментальному и геометрическому рассмотрению плоских, сферических, цилиндрических и конических зеркал, а также исследования по преломлению света.

Фундаментальные работы по оптике Альхазена были в 12 веке переведены на латинский язык и распространялись в рукописи, но широкой известности  в средние века не имели. В большей степени был известен трактат по оптике Эразма Вителлия, вышедший в 70-е годы 13 века и где по существу излагались представления Евклида, Птолемея и Альхазена.

2.3 Эпоха Возрождения (ХV – ХVI вв.).

2.3.1 Физика  как наука того времени.

В 11-12 веках после периода упадка наблюдается развитие экономической деятельности в Западной Европе. Благодаря этому и контактам с арабским миром происходит интеллектуальное пробуждение в Испании, Лотарингии, Франции, Шотландии. В эпоху Возрождения появляется новый подход к исследованию, в полной мере начинает развиваться экспериментальный метод - предпосылка для создания классической физики, которая зарождается с конца 16 века. Ведущая роль здесь принадлежит Галилею.

2.3.2 Совершенные открытия.

ХV в.

– Исследование свободного падения и движения тела, брошенного горизонтально, удара тел, расширение понятия момента сил, определение центра тяжести тетраэдра, изобретение ряда механизмов для преобразования и передачи движений – конусный шарикоподшипник, цепные и ременные передачи, двойное соединение (теперь названное “кардановым”) и др. (Леонардо да Винчи). 
– Зарождение динамики (выяснение природы инерции, установление факта, что действие равно противодействию и противоположно ему). Изучение механизма трения и его влияния на условия равновесия, определение коэффициентов трения и установление закона трения, открытие существования сопротивления среды и подъемной силы (Леонардо да Винчи). 
– Исследование отражения звука и формулирование принципа независимости распространения звуковых волн от различных источников (Леонардо да Винчи). 
– Леонардо да Винчи исследует законы зрения, описывает камеру-обскуру, выполняет графическое построение хода лучей в линзах.

1440

– Н. Кузанский изобретает первый гигрометр (из шерсти). В 1664 Ф. да Поппи конструирует гигрометр из пергаментной бумаги, в 1781 гигрометр из китового уса – Ж. Делюк, в 1783 волосяной гигрометр – Х. де Соссюр.

1475

– Леонардо да Винчи высказал идею о невозможности вечного  двигателя.

ок. 1490

– Леонардо да Винчи открывает  явление капиллярности, наблюдая поднятие жидкостей в узких трубках.

XV в.

– Н. Кузанский развивает  мысли о том, что движение является основой всего сущего, неподвижного центра во Вселенной нет (идея относительного движения), последняя бесконечна, Земля  и все небесные тела созданы из одной и той же первоматерии.

1538

– Дж. Фракасторо применил линзы для увеличения видимых  размеров предметов.

1543

– Вышел в свет труд Н. Коперника “О вращении небесных сфер”, содержащий изложение гелиоцентрической  системы мира, отражающей истинную картину мироздания и приведшей к революционным преобразованиям в мировоззрении и естествознании.

ХVI в.

– Ф. Мавролик написал (1567) трактат “Просвещающее о свете” (опубликован в 1611, посмертно). В нем  рассмотрены прямолинейное распространение  свеча, отражение и преломление света, явление радуги, анатомия глаза, механизм зрения. Мавролик объяснил дефекты зрения (дальнозоркость и близорукость) и действие очков, показал, что выпуклые линзы являются собирательными, а вогнутые – рассеивающими, что при прохождении пластинки с плоскопараллельными гранями световые лучи не изменяют направления распространения, а лишь смещаются параллельно самим себе; первый указал на семь цветов радуги (а не на три, как считали до него долгое время) и начал исследовать преломление света в призмах.

Информация о работе Период становления физики как науки. Физика И.Ньютона