Автор работы: Пользователь скрыл имя, 04 Декабря 2013 в 14:48, реферат
В настоящее время многие ученые считают водород наиболее перспективным энергоносителем будущей энергетики. Основным и очень доступным его источником является вода. При сжигании водорода образуется опять вода - совершенно безопасное вещество. Поэтому считается, что по экологической безопасности у водорода нет конкурентов. Однако реализация этой задачи сдерживается большими энергозатратами на получение водорода из воды. Если нефть, газ и уголь - это готовые энергоносители, а водород в чистом виде на Земле отсутствует. Для того, чтобы водородная энергетика состоялась, нужно, чтобы полученная энергия при сжигании водорода намного превышала затраченную энергию на его получение.
Из этого следует также вполне логичный вывод о том, что мощность на клеммах электролизёра надо рассчитывать по формуле
Однако этот результат противоречит показаниям приборов на клеммах аккумулятора или счётчика электроэнергии. Там регистрируется величина мощности, определяемая по формуле
Удивительным является то, что с этим противоречием мирились со времён Фарадея и никто не искал его причины. А ведь только при раскрытии причин противоречий выявляются новые научные представления. Попытаемся раскрыть причину этого противоречия. Для этого изготовим автономный источник питания, который не был бы связан ни с аккумулятором, ни с общей электрической сетью. Главное требование к такому источнику – одинаковость импульсов напряжения и тока на его клеммах и на клеммах электролизёра. Роль такого источника может выполнить электромеханический генератор электрических импульсов (рисунок 3.2). Он приводится во вращение электродвигателем, включённым в электрическую сеть. Вполне естественно, что электрические цепи электродвигателя и электромеханического генератора электрических импульсов изолированы друг от друга. В этом случае можно проследить за изменением баланса мощности на клеммах электродвигателя, электромеханического генератора электрических импульсов и электролизёра и проверить какая из формул (3) или (4) отражает реальность.
На рисунке 3.3. представлена осциллограмма напряжения и тока, снятая с клемм электромеханического генератора электрических импульсов (рис. 2) и электролизёра. Поскольку между их клеммами лишь провода, то осциллограмма напряжения и тока у них едина.
Обработка этой осциллограммы показала, что скважность импульсов напряжения равна, примерно, 2,6, а тока – 3,6. Средние величины напряжения и тока определяются делением их амплитудных значений, на скважность импульсов (1), (2). Осциллограмма даёт нам такие значения: , .
С учётом этого средняя мощность равна
Если её вычислять, не учитывая скважность импульсов напряжения, как это делалось до сих пор, то расчёт надо вести по формуле (4) и результат будет такой
Особо отметим, что на клеммах электролизёра присутствует постоянный потенциал (рисунок 3.2), а первичный источник энергии, в данном случае электромеханический генератор электрических импульсов не генерирует его. Он генерирует импульсы напряжения, поэтому электрическую мощность на его клеммах определяют формулы 3 и 5.
Рисунок 3.2 - Электромеханический генератор электрических импульсов
Рисунок 3.3 - Осциллограмма напряжения (1) и тока (2) на клеммах электромеханического генератора электрических импульсов и электролизёра
Разность мощности между рабочим и холостым ходом, зафиксированная счётчиком электроэнергии на клеммах электродвигателя, равна 42 Ватта. Эта величина - в промежутке между результатами расчётов по формулам (3) и (4). Что надо учесть ещё, чтобы приблизить теоретические значения (5) и (6) к экспериментальной величине 42 Ватта?
Обмотка и корпус генератора нагреваются, а осциллограмма (рис. 3) не учитывает расход энергии на этот процесс. Масса генератора 1600 г. Средняя разность температуры генератора, между рабочим и холостым ходами с учётом охлаждения поверхности вращающегося ротора, составила 13 град. Генератор изготовлен из стали, его удельная теплоёмкость равна 0,50 Дж/грамм. град. Опыт длился 560 сек. За это время затраты энергии на нагрев статора и ротора электромеханического генератора электрических импульсов составили 0,5х1600х13=10400 Дж или 10400/560=18,57 Ватт. Это значит, что к величинам мощности (5) и (6), рассчитанным по формулам (3) и (4), надо прибавить по 18,57 Ватт. В результате будем иметь 37,20 Ватта и 76,44 Ватта соответственно.
Уточнение температуры нагрева всех частей генератора усиливает связь математической модели (3) для расчёта импульсной мощности с реальностью (42 Ватта) и удаляет математическую модель (4) от этой реальности (42 Ватта).
Таким образом, прямые удельные затраты мощности на электролиз воды составляют 18,63 Ватта. Потери энергии на нагрев генератора (42,00-18,63=23,37 Ватта) больше прямых затрат.
За час работы было получено 11,1 литра газовой смеси. Прямые удельные затраты энергии на её получение составили 18,63Втч/11,10=1,68 Втч/литр. Если взять затраты энергии на получение смеси газов из воды лучшими современными электролизёрами за 100%, то КПД процесса электролиза воды этими электролизёрами будет около 56,60%. Это свидетельствует о том, что почти все резервы уменьшения затрат энергии на традиционный процесс электролиза воды и на традиционный способ питания электролизёров уже почти исчерпаны и нужно искать другие решения этих проблем. Они однозначно следуют из осциллограммы (рисунок 3.3), но мы не будем детализировать их, а приведём результаты экспериментов по низкоамперному электролизу воды.
Низковольтный процесс электролиза воды известен со времен Фарадея. Он широко используется в современной промышленности. В соответствии с законом Фарадея, затраты энергии на получение одного кубического метра водорода в этом случае составляют около 4 кВтч/ . Между тем в природе существует более экономный процесс разложения молекул воды на водород и кислород. Протекает он при фотосинтезе. При этом атомы водорода отделяются от молекул воды и используются в качестве соединительных звеньев при формировании органических молекул, а кислород уходит в атмосферу.
Возникает вопрос: а нельзя ли смоделировать электролитический процесс разложения воды на водород и кислород, который идет при фотосинтезе? Поиск условий моделирования процесса разложения воды на водород и кислород, который идет при фотосинтезе, привел к простой конструкции ячейки (рисунок 3.4). Оказалось, что процесс электролиза может протекать при среднем токе 0,02 А. Поэтому этот процесс назван низкоамперным.
Прежде всего, отметим, что материал анода и катода один – сталь, что исключает возможность формирования гальванического элемента. Тем не менее, на электродах ячейки появляется разность потенциалов около 0,1В при полном отсутствии электролитического раствора в ней. После заливки раствора разность потенциалов увеличивается. При этом положительный знак заряда всегда появляется на верхнем электроде, а отрицательный – на нижнем. Если источник питания генерирует импульсы напряжения, то выход газов увеличивается.
Процесс генерирования газов легко наблюдается по выходу образующихся пузырьков. Они продолжают выделяться и после отключения электролизера от сети. Конечно, после отключения электролизера от сети интенсивность выхода газов постепенно уменьшается, но не прекращается в течение нескольких часов. Это убедительно доказывает тот факт, что электролиз идет за счет разности потенциалов на электродах (рисунки 3.4 и 3.5). Спустя час после отключения электролизёра от сети напряжение на его электродах уменьшается до одного вольта, а постоянная составляющая тока почти не изменяется.
Рисунок 3.4 - Низкоамперный электролизер
Рисунок 3.5 - Напряжение и ток на клеммах включённого в сеть электролизёра
Поскольку лабораторная модель ячейки низкоамперного электролизёра генерирует небольшое количество газов, то самым надёжным методом определения их количества является метод определения изменения массы раствора за время опыта и последующего расчета выделившегося водорода и кислорода.
Известно, что грамм-атом численно равен атомной массе вещества, а грамм-молекула – молекулярной массе вещества. Например, грамм-молекула водорода в молекуле воды равна двум граммам, а грамм-атом атома кислорода – 16 граммам. Грамм-молекула воды равна 18 граммам. Так как масса водорода в молекуле воды составляет 2х100/18=11,11%, а масса кислорода – 16х100/18=88,89%, то это же соотношение водорода и кислорода содержится в одном литре воды. Это означает, что в 1000 граммах воды содержится 111,11 грамм водорода и 888,89 грамм кислорода.
Один литр водорода весит 0,0846 гр., а один литр кислорода -1,47 гр. Это означает, что из одного литра воды можно получить 111,11/0,0846=1313,36 литра водорода и 888,89/1,47=604,69 литра кислорода. Из этого также следует, что один грамм воды содержит 1,31 литра водорода и 0,60 литра кислорода.
Затраты электроэнергии на получение 1000 литров водорода сейчас составляют 4 кВтч, а на один литр – 4 Втч. Поскольку из одного грамма воды можно получить 1,31 литра водорода, то на получение водорода из одного грамма воды сейчас расходуется 1,31х4=5,25 Втч.
В табл. 1 представлены результаты эксперимента при питании электролизера импульсами напряжения и тока (рис. 5) с периодическим включением его в электрическую сеть на 10 минут. Остальные 50 минут каждого часа электролизёр работал при отключенной электрической сети, а процесс выхода газов продолжался.
Таблица 1. Показатели электролиза воды низкоамперным электролизёром (рисунок 3.4)
Показатели |
Сумма |
1 – продолжительность
работы электролизера, |
6x10=60,0 |
2 – показания вольтметра V, Вольт |
11,4 |
2’ – показания осциллографа V’, Вольт (формула 1) |
0,40 |
3 – показания амперметра I, Ампер; |
0,02 |
3’ – показания осциллографа, I’, Ампер (формула 2) |
0,02 |
4 – расход энергии (P=VxIxτ/60), Втч (формула 4) |
0,228 |
4’ – прямой расход энергии (P’=V’xI’x τ/60) Втч (формула 3) |
0,008 |
5 – продолжительность работы электролизёра, отключенного от сети, за шесть циклов, мин |
6x50=300,0 |
6 – изменение массы раствора m, грамм |
0,60 |
7 – масса испарившейся воды m’, грамм |
0,06 |
8 – масса воды, перешедшей в газы, m’’=m-m’, г. |
0,54 |
9 – расход энергии на грамм воды, перешедшей в газы, по показаниям вольтметра и амперметра E=P/m’’, Втч/г. воды (формула 4) |
0,42 |
9’ – прямой расход энергии на грамм воды, перешедшей в газы, по показаниям осциллографа E’=P’/m’’, Втч/г. воды (формула 3) |
0,02 |
10 –существующий расход энергии на грамм воды, переходящей в газы E’’, Втч/г. воды |
5,25 |
11 – уменьшение расхода
энергии на получение водорода
из воды по показаниям |
23 |
11’ – уменьшение прямого расхода энергии на получение водорода из воды по показаниям осциллографа K’=E’’/P’, раз |
656 |
12 – прямой расход энергии на куб водорода (0,02х1000)/1,31=0,015 кВтч. |
0,015 |
13 – ожидаемый расход энергии на куб водорода с учётом КПД источника питания, кВтч |
0,150 |
Таким образом, есть основания полагать, что низкоамперный электролизёр обладает свойствами конденсатора или аккумулятора. Зарядившись в начале, он постепенно разряжается под действием электролитических процессов, протекающих в нём. Если его подзаряжать периодически импульсами напряжения, то заряд электролизёра, как конденсатора, будет оставаться постоянным, а процесс электролиза - стабильным.
Наличие постоянной составляющей электрического потенциала на входе в электролизёр показывает, что для расчета затрат энергии на процесс электролиза надо использовать не показания вольтметра, а показания осциллографа, регистрирующие полный импульсный потенциал подзарядки электролизёра, следующий из осциллограммы, представленной на рисунке 3.5. Вполне естественно, что указанный эффект реализуется лишь при использовании электромеханического источника питания.
Таким образом, вольтметр показывает величину напряжения заряженного электролизёра, как конденсатора, который постепенно разряжается, а полные импульсы напряжения, фиксируемые осциллографом – величину его подзарядки, которая и характеризует прямую энергию на электролиз воды. Затраты энергии на получение водорода из воды при низкоамперном электролизе значительно уменьшаются, если в качестве источника энергии использовать электромеханический генератор электрических импульсов.
4 ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И КИСЛОРОДА ЭЛЕКТРОЛИЗОМ ВОДНОГО РАСТВОРА ЭЛЕКТРОЛИТА
Изобретение относится к
технологии и устройствам для
получения водорода и кислорода
путем электролиза водного
Информация о работе Процесс электролиза в получении водорода