Радиолакационные системы летательных аппаратов

Автор работы: Пользователь скрыл имя, 15 Декабря 2013 в 16:28, реферат

Описание работы

Фазированная антенная решетка — тип антенн, в виде группы антенных излучателей, в которых относительные фазы сигналов изменяются комплексно, так, что эффективное излучение антенны усиливается в каком-то одном, желаемом направлении и подавляется во всех остальных направлениях.

Содержание работы

Введение. 2
Характеристики отечественных БРЛС 4
Бортовая РЛС "Копье" 8
Структурная схема БРЛС "Копье-21И" 12
Источники: 17

Файлы: 1 файл

реферат Соболева А.Г...docx

— 1.20 Мб (Скачать файл)
  1. Дальность обнаружения по скорости целей с Sэпр = 5 кв.м. - 68 км
  1. Целеуказание управляемым ракетам РВВ-АЕ, Р-27Р, Р-27Э, Р-27Т, Р 27АЕ, Р-73

Характеристики в режиме «воздух-поверхность»:

  1. Дальность обнаружения морских целей с Sэпр = 100 кв.м:
  • при волнении моря 0 баллов - 80 км
  • при волнении моря 4 балла - 50 км
  1. Целеуказание активным ракетам Х-31А, УРСам и авиабомбам.
  1. Обучение луча при картографировании: 20:1, 45:1, 90:1

Разрешение при картографировании:

  1. низкое (в зоне до 80 км) - 300х300 м
  2. среднее (в зоне до 60 км) - 30х30 м
  3. высокое (в зоне до 20 км) - 10х10 м

Масса и энергопотребление:

  1. Масса - 115 кг

Потребляемая мощность:

  • по переменному току - 8.5 кВт
  • по постоянному току - 1 кВт

Напряжение питания:

  • переменное - трехфазное 200 В, 400 ± 8 Гц,
  • постоянное - 27 В.

 

 

 

Рис.5. Внешний вид БРЛС «Копье-21И»

 

 

 

 

 

 

 

 

 

Структурная схема БРЛС "Копье-21И"

Рис.6. Структурная схема  БРЛС «Копье-21»

 

В состав станции входят следующие блоки:

Антенный блок (блок 01), в  котором для формирования основной диаграммы направленности используется плоская щелевая решетка с  приводом по осям азимута и угла места. В антенный блок входят также  компенсационная антенна (К), волноводный  сумматор, переключатель каналов  приема (КАН – Компенсационный-Азимутальный-Наклона), циркулятор прием-передача (Ц), коммутатор антенна-эквивалент (КАЭ) и полосовой фильтр (Ф). В плоской щелевой решетке антенного блока формируются суммарный сигнал диаграммы направленности (S) и разностные сигналы азимута – DА и угла места (наклона) – DН для моноимпульсного метода пеленгации целей. Суммарный канал подключается через циркуляр ко входу первого канала приемника. Ко входу второго канала приемника через переключатель (КАН) подключаются разностные сигналы DА и DН или выход антенны компенсационного (К). Антенна компенсационного канала имеет широкую диаграмму направленности, перекрывающую боковые лепестки основной антенны. В зависимости от соотношения сигналов суммарного и компенсационного каналов для каждого элемента разрешения по дальности и частоте выносится решение о наличии помехи в этом элементе и его «отбраковке». То есть, когда сигнал компенсационного канала превышает сигнал основного, элемент разрешения считается пораженным помехой и во внимание не принимается. Передатчик (блок 02) осуществляет усиление СВЧ мощности и содержит усилитель на лампе бегущей волны, модулятор, высоковольтный выпрямитель, схемы контроля и защиты от нарушений работы ЛБВ, систем жидкостного охлаждения и наддува. Задающий генератор (блок 22) формирует сигнал несущей частоты для передатчика, сигналы гетеродинных частот для приемника (блок 09) и сигнал опорной частоты для аналого-цифрового преобразователя (блок 19). Задающий генератор содержит кварцевый генератор и синтезатор частот, управляемый по информации, поступающей из БЦВМ (1Ц175) через блок 13, и обеспечивающий электронную перестройку несущей частоты передатчика и частоты первого гетеродина приемника. Часть мощности задающего генератора ответвляется и передается на антенну для формирования контрольного сигнала (Кс). В задающем генераторе обеспечивается амплитудная и фазовая модуляции сигнала несущей частоты РЛС, частоты подсвета и радиокоррекции ракет. Двухканальный приемник (блок 09) с двойным преобразованием частоты, содержит малошумящие транзисторные усилители с защитным устройством, аттенюаторы, коммутатор каналов и синхронные детекторы. Управляемый гетеродин (блок 29) уменьшает влияние помех от земли путем переноса частоты отраженного помехового сигнала на нулевую частоту. Частота гетеродина управляется БЦВМ через блок 19 совместно с сигналом перестройки блока 13. Аналого-цифровой преобразователь (блок 19) содержит два АЦП и схемы управления. Каждый из АЦП преобразует сигнал, поступающий с синхронного детектора приемника, и выдает результат преобразования в виде 16-ти разрядного двоичного слова в процессор сигналов (блок 08). Частота преобразования – 14 МГц. Первоначальная разрядность преобразования – 10 (в более поздних изделиях – 12 разрядов), однако во всех режимах кроме режима воздух-поверхность, в котором излучается сигнал, модулированный по фазе кодом Баркера, после АЦП осуществляется предварительное суммирование от 2 до 16 соседних отсчетов. Предварительное суммирование, эквивалентное применению фильтра НЧ, снижает скорость выдачи информации на процессор сигналов и повышает эффективную разрядность квантования до 13-14. Блок 19 в соответствии с информацией, поступающей от БЦВМ (1Ц175), обеспечивает временное стробирование принятого сигнала а АЦП и формирование импульса запуска передатчика. Процессор сигналов (блок 08) предназначен для обработки радиосигналов в режимах «воздух-воздух» и «воздух-поверхность». Процессор выполняет сжатие фазоманипулированных сигналов, доплеровскую фильтрацию, пороговую обработку и другие необходимые операции обработки радиолокационных сигналов. Кроме того, узел формирования телевизионного изображения (ФТИ), размещенный в блоке 08, выдает телевизионный видеосигнал в систему индикации при картографировании. Синхронизатор (блок 13) вырабатывает модулирующие импульсные сигналы передатчика, в том числе для линии радиокоррекции ракет и сигнал перестройки управляемого гетеродина. В состав блока конструктивно входит усилитель мощности цифровых сигналов магистрального параллельного интерфейса (МПИ). БЦВМ (1Ц175-1 и 1Ц175-2) осуществляют обработку данных, получаемых из процессора сигналов, управляют работой блоков БРЛС по магистральному параллельному интерфейсу, получают и выдают информацию бортовым системам самолета. Электропитание блоков БРЛС осуществляется от источника вторичного электропитания (блок 07). Коммутатор первичного электропитания (блок 30) обеспечивает включение БРЛС от трехфазной сети 200В, 400Гц и постоянного напряжения +27В, защиту блоков БРЛС по току потребления, а также по исправности систем жидкостного охлаждения и наддува. Антенно-фидерное устройство АФУ-50 предназначено для передачи СВЧ сигнала от ответвителя блока 01 к различным радиолокационным головкам самонаведения, то есть служит для контроля РГС на подвеске, и расположено на фюзеляже и крыльях самолета.

 

Система отображения информации состоит из:

  • электронно-лучевого индикатора (ЭЛИ) с кнопочным обрамлением (КО),
  • коллиматорного авиационного индикатора (КАИ), формирующего радиолокационное изображение целей на лобовом стекле кабины пилота,
  • блока формирования изображений (БОИ-75) на ЭЛИ и КАИ.

Размещение блоков БРЛС на борту самолета МиГ-21 показано на рисунке 7.

Рис.7. Размещение блоков БРЛС «Копье-21»

Внешний вид кабины пилота истребителя «МиГ-21», расположение органов управления РЛС и устройств  отображения информации показаны на рисунке 8.

 

Рис.8. Расположение устройств  управления и отображения информации БРЛС «Копье-21» в кабине пилота.

Дальнейшее совершенствование БРЛС и теплопеленгаторов связано в основном с бурным развитием электроники и совершенствованием математического аппарата. В первую очередь сигнальные процессоры с жесткой архитектурой начали заменять на программируемые сигнальные процессоры (ПСП). Впервые ПСП был установлен на БРЛС APG-65 истребителя F/A-18. С середины 80-х годов ПСП заменяет старые сигнальные процессоры в БРЛС APG-63 и разрабатывается ПСП для перспективного истребителя программы ATF. Применение ПСП позволило применять один (или группу) процессор для различных задач, в том числе связи, навигации и значительно расширить возможности БРЛС. В первую очередь рост производительности ПСП с быстрым преобразованием Фурье отражается на способности БРЛС различать сигналы от цели в более широком спектре в режиме реального времени. Практическим применением стало без запросное определение гос. принадлежности и распознавание типа обнаруженной цели. Информационными признаками распознавания являются флуктуации отраженного сигнала в широком диапазоне. Измерение спектра и амплитудной характеристики флуктуаций позволяет сравнить характер отраженного сигнала с имеющимися в базе данных, и с высокой вероятностью опознать тип цели. Вторым применением можно считать расширение возможностей БРЛС в режиме Воздух-Земля, например повышение разрешающей способности при картографировании местности и распознавание движущихся целей (наземных, с относительно низкой скоростью). Все эти задачи требуют в первую очередь быстродействующих сигнальных процессоров и БЦВМ с большим объёмом запоминающего устройства, быстродействием и повышенной пропускной способностью шины. Дальнейшее совершенствование БРЛС можно связать с освоением ФАР и АФАР. Уникальные возможности АФАР по формированию сложной и многолепестковой диаграммы направленности с одновременной работой на разных частотах позволяет интегрировать многие радиолокационные системы – БРЛС, запросчики гос.опознавания, системы связи, навигации и КРЭП (комплекс радиоэлектронного противодействия). Таким образом, перспективный бортовой комплекс будет совмещать в себе множество функций и строиться не по федеративному принципу (множество независимых систем общающихся непосредственно с БЦВМ), а как единая многофункциональная система, гибко изменяющая свою архитектуру в зависимости от текущих требований. Первым шагом на пути создания подобной системы можно назвать бортовой комплекс истребителя F-22 Raptor (созданный в результате упомянутой программы ATF) построенный на базе БРЛС APG-77 с АФАР.

 

Рис.10. Щелевая (ЩАР) и фазированная(ФАР) антенные решетки для БРЛС

 

Совершенствование теплопеленгаторов  и систем ночного видения идёт в нескольких направлениях. Для пассивного обнаружения и скрытного сопровождения  целей совершенствуется приёмник ИК излучения с двумерными матрицами  чувствительных элементов. Ключевыми моментами разработок различных фирм стали быстродействие и расширение спектра детектируемых сигналов. Решения базируются на использовании детекторов на основе сплавов кадмий-теллур-ртуть (чувствительного к ИК излучению в диапазоне 1 – 12 мкм), применение двухслойных матриц и оптимизация методов считывания сигнала. Первый слой матрицы является собственно мозаичным детектором, второй представляет собой мультиплексор считывающий показания каждого детектора и преобразующий их в цифровую форму. Помимо обнаружения и сопровождения целей в воздушном бою, на ИК станции может быть возложена задача предупреждения о пуске ракет. Уже созданы образцы ИК систем контроля за воздушным пространством с круговым обзором. Вспышка пуска ракеты детектируется на дальности до 10км, что достаточно для принятия мер по уклонению и противодействию. Помимо выброса тепловых ловушек, противодействие заключается в постановке модулированных помех в ИК спектре в том числе и прицельно, при помощи лазерного излучения.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Источники:

1. http://www.phazotron.com/military.parts.html

2. http://armies.biz/avia/mig21.htm

3. http://www.warfare.ru/?lang=rus&linkid=2422&catid=334

4. http://kaf401test.rloc.ru/articles/5/28/

5. http://avia-museum.narod.ru/russia/mig-21_add.html

6. http://www.rusarmy.com/forum/viewtopic.php?t=1469

7. http://radar.narod.ru/rdr-ap-ra.html#r63

8. http://www.snariad.ru/istrebiteli/mig-21#high_1

9. http://world-air.narod.ru/html/mig21-93.html

10. http://airbase.ru/hangar/equipment/radars/rlz/

 


Информация о работе Радиолакационные системы летательных аппаратов