Разработка и изготовление лабораторного стенда по изучению вольтамперных характеристик полупроводниковых диодов

Автор работы: Пользователь скрыл имя, 14 Ноября 2013 в 10:26, курсовая работа

Описание работы

Целью данной работы является разработка и создание прибора, предназначенного для изучения полупроводниковых диодов. Для исследования нами был выбран полупроводниковый диод, который наиболее характерно отражает почти все особенности и свойства полупроводниковой техники в целом и является одним из самых популярных электронных устройств в современной радиотехнике.

Содержание работы

Введение……………………………………………………………6
1 Полупроводниковые диоды…………………………………………….7
1.1 Типы полупроводниковых диодов………………………………………7
1.2 Назначение и применение диодов………………………………………20
1.3 Общий принцип работы………………………………………………….21
2 Лабораторный стенд по изучению вольтамперных характеристик полупроводниковых диодов…………………………………………………….22 2.1 Принципиальная схема устройства………………………………………..22
2.1.2 Диод Д226Е …………………………………………………………...22
2.1.3 Диод Д310……………………………………………………………..23
2.1.4 Диод Д106……………………………………………………………...24
2.2 Описание работы лабораторного стенда…………………………………..25
2.3 Инструкция по использованию лабораторного стенда для
изучения вольтамперных характеристик полупроводниковых диодов……..31
Заключение………………………………………………………………………33
Список использованных источников ........................................................ 34

Файлы: 1 файл

моя курсовая диоды.doc

— 3.02 Мб (Скачать файл)

При повышении температуры р-n- перехода число не основных носителей заряда увеличивается за счет перехода части электронов из валентной зоны в зону проводимости и образования пар носителей заряда электрон-дырка. Поэтому обратный ток диода возрастает.

В случае приложения к диоду обратного  напряжения в несколько сотен  вольт внешнее электрическое  поле в запирающем слое становится настолько сильным, что способно вырвать электроны из валентной зоны в зону проводимости (эффект Зенера). Обратный ток при этом резко увеличивается, что вызывает нагрев диода, дальнейшей рост тока и, наконец, тепловой пробой (разрушение) р-n- перехода. Большинство диодов может надежно работать при обратных напряжениях, не превышающих (0,7…0,8)Uпроб.

Допустимое обратное напряжение германиевых  диодов достигает − 100…400В, а кремниевых диодов − 1000…1500В.

Выпрямительные диоды применяются  для выпрямления переменного  тока (преобразования переменного тока в постоянный); используются в схемах управления и коммутации для ограничения паразитных выбросов напряжений, в качестве элементов электрической развязки цепей и т.д.

В ряде мощных преобразовательных установок  требования к среднему значению прямого тока, обратного напряжения превышают номинальное значение параметров существующих диодов. В этих случаях задача решается параллельным или последовательным соединением диодов.

Параллельное соединение диодов применяют  в том случае, когда нужно получить прямой ток, больший предельного тока одного диода. Но если диоды одного типа просто соединить параллельно, то вследствие несовпадения прямых ветвей ВАХ они окажутся различно нагруженными и, в некоторых прямой ток будет больше предельного.

 

Рисунок 3.4 – Параллельное соединение выпрямительных диодов

 

Для выравнивания токов используют диоды с малым различием прямых ветвей ВАХ (производят их подбор) или  последовательно с диодами включают уравнительные резисторы с сопротивлением в единицы Ом. Иногда включают дополнительные резисторы (рис. 3.4, в) с сопротивлением, в несколько раз большим, чем прямое сопротивление диодов, для того чтобы ток в каждом диоде определялся главным образом сопротивлением Rд, т.е. Rд >> rпр вд. Величина Rд составляет сотни Ом.

Последовательное соединение диодов применяют для увеличения суммарного допустимого обратного напряжения. При воздействии обратного напряжения через диоды, включенные последовательно, протекает одинаковый обратный ток Iобр. однако ввиду различия обратных ветвей ВАХ общее напряжение будет распределяться по диодам неравномерно. К диоду, у которого обратная ветвь ВАХ идет выше, будет приложено большее напряжение. Оно может оказаться выше предельного, что повлечет пробой диодов.

 

 

Рисунок 3.5 – Последовательное соединение выпрямительных диодов

 

Для того, чтобы обратное напряжение распределялось равномерно между диодами  независимо от их обратных сопротивлений, применяют шунтирование диодов резисторами. Сопротивления Rш резисторов должны быть одинаковы и значительно меньше наименьшего из обратных сопротивлений диодов Rш << rобр вд, чтобы ток, протекающий через резистор Rш, был на порядок больше обратного тока диодов.

 

3.2 Стабилитроны

 

Полупроводниковый стабилитрон –  это полупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока и который используется для стабилизации напряжения.

В полупроводниковых стабилитронах используется свойство незначительного изменения обратного напряжения на р-n- переходе при электрическом (лавинном или туннельном) пробое. Это связано с тем, что небольшое увеличение напряжения на р-n- переходе в режиме электрического пробоя вызывает более интенсивную генерацию носителей заряда и значительное увеличение обратного тока.

Низковольтные стабилитроны изготовляют  на основе сильнолегированного (низкоомного) материала. В этом случае образуется узкий плоскостный переход, в котором при сравнительно низких обратных напряжениях (менее 6В) возникает туннельный электрический пробой. Высоковольтные стабилитроны изготавливают на основе слаболегированного (высокоомного) материала. Поэтому их принцип действия связан с лавинным электрическим пробоем.

 

Основные параметры стабилитронов:

  • напряжение стабилизации Uст (Uст = 1…1000В);
  • минимальный Iст міn и максимальный Iст мах токи стабилизации (Iст міn » 1,0…10мА, Iст мах » 0,05…2,0А);
  • максимально допустимая рассеиваемая мощность Рмах;
  • дифференциальное сопротивление на участке стабилизации rд = DUст/DIст , (rд » 0,5…200Ом);
  • температурный коэффициент напряжения на участке стабилизации:

TKU стабилитрона показывает на сколько процентов изменится стабилизирующее напряжение при изменении температуры полупроводника на 1°С

(TKU = −0,5…+0,2 %/°С).

 

 

Рисунок 3.6 –  Вольт-амперная характеристика стабилитрона и его условное графическое обозначение

 

Стабилитроны  используют для стабилизации напряжений источников питания, а также для фиксации уровней напряжений в различных схемах.

Стабилизацию  низковольтного напряжения в пределах 0,3…1В можно получить при использовании  прямой ветви ВАХ кремниевых диодов. Диод, в котором для стабилизации напряжения используется прямая ветвь ВАХ, называют стабистором. Существуют также двухсторонние (симметричные) стабилитроны, имеющие симметричную ВАХ относительно начала координат.

Стабилитроны  допускают последовательное включение, при этом результирующее стабилизирующее напряжение равно сумме напряжений стабилитронов:

Uст = Uст1 + Uст2 +…

Параллельное  соединение стабилитронов недопустимо, т.к. из-за разброса характеристик и  параметров из всех параллельно соединенных  стабилитронов ток будет возникать  только в одном, имеющем наименьшее стабилизирующее напряжение Uст, что вызовет перегрев стабилитрона.

 

3.3 Туннельные и обращенные диоды

 

Туннельный диод – это полупроводниковый диод на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению на вольт - амперной характеристике при прямом напряжении участка отрицательного дифференциального сопротивления.

Туннельный диод изготовляется  из германия или арсенида галлия с  очень большой концентрацией  примесей, т.е. с очень малым удельным сопротивлением. Такие полупроводники с малым сопротивлением называют вырожденными. Это позволяет получить очень узкий р-n- переход. В таких переходах возникают условия для относительно свободного туннельного прохождения электронов через потенциальный барьер (туннельный эффект). Туннельный эффект приводит к появлению на прямой ветви ВАХ диода участка с отрицательным дифференциальным сопротивлением. Туннельный эффект состоит в том, что при достаточно малой высоте потенциального барьера возможно проникновение электронов через барьер без изменения их энергии.

Основные параметры туннельных диодов:

  • пиковый ток Iп – прямой ток в точке максимума ВАХ;
  • ток впадины Iв − прямой ток в точке минимума ВАХ;
  • отношение токов туннельного диода Iп/Iв;
  • напряжение пика Uп – прямое напряжение, соответствующее пиковому току;
  • напряжение впадины Uв − прямое напряжение, соответствующее току впадины;
  • напряжение раствора Uрр.

Туннельные диоды используются для генерации и усиления электромагнитных колебаний, а также в быстродействующих переключающих и импульсных схемах.

 

Рисунок 3.7 – Вольт-амперная характеристика туннельного диода

 

Обращенный диод – диод на основе полупроводника с критической концентрацией примесей, в котором проводимость при обратном напряжении вследствие туннельного эффекта значительно больше, чем при прямом напряжении.

Принцип действия обращенного диода  основан на использовании туннельного эффекта. Но в обращенных диодах концентрацию примесей делают меньше, чем в обычных туннельных. Поэтому контактная разность потенциалов у обращенных диодов меньше, а толщина р-n- перехода больше. Это приводит к тому, что под действием прямого напряжения прямой туннельный ток не создается. Прямой ток в обращенных диодах создается инжекцией не основных носителей зарядов через р-n- переход, т.е. прямой ток является диффузионным. При обратном напряжении через переход протекает значительный туннельный ток, создаваемый перемещение электронов сквозь потенциальный барьер из р- области в n-область. Рабочим участком ВАХ обращенного диода является обратная ветвь.

Таким образом, обращенные диоды обладают выпрямляющим эффектом, но пропускное (проводящее) направление у них  соответствует обратному включению, а запирающее (непроводящее) – прямому включению.

 

Рисунок 3.8 – Вольт-амперная характеристика обращенного диода

 

Обращенные диоды применяют  в импульсных устройствах, а также  в качестве преобразователей сигналов (смесителей и детекторов) в радиотехнических устройствах.

 

3.4 Варикапы

 

Варикап – это полупроводниковый  диод, в котором используется зависимость емкости от величины обратного напряжения и который предназначен для применения в качестве элемента с электрически управляемой емкостью.

Полупроводниковым материалом для изготовления варикапов является кремний.

Основные параметры варикапов:

  • номинальная емкость Св – емкость при заданном обратном напряжении (Св = 10…500 пФ);
  • коэффициент перекрытия по емкости ; (Кс = 5…20) – отношение емкостей варикапа при двух заданных значениях обратных напряжений.

Варикапы широко применяются в  различных схемах для автоматической подстройки частоты, в параметрических  усилителях.

Рисунок 3.9 – Вольт-фарадная характеристика варикапа

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Назначение и область  применения

Назначение и применение полупроводниковых  диодов в современной технике  весьма разнообразно и зависит от вида конкретного диода. Основные виды диодов:

1) Выпрямительные диоды – п/п  диоды, предназначенные для выпрямления переменного тока. Основной характеристикой такого диода является коэффициент выпрямления равный отношению прямого и обратного токов при одном и том же напряжении. Чем выше коэффициент выпрямления, тем меньше потери и выше КПД выпрямителя.

2) Высокочастотные диоды (СВЧ-диоды)  – эти диоды предназначены  для работы в устройствах высокой  и сверхвысокой частоты. Они  используются для модуляции и  детектирования сверхвысокочастотных  колебаний в диапазоне сотен  мегагерц. В качестве высокочастотных  обычно применяют точечные диоды, емкость электронно-дырочного перехода в которых составляет сотые и десятые доли пикофарад.

3) Варикапы – это диоды, работа  которых основана на изменении  емкости электронно-дырочного перехода  в зависимости прикладываемого  обратного напряжения. Эти диоды применяются в качестве конденсаторов с управляемой емкостью.

4) Стабилитроны – это диоды,  используемые для стабилизации  напряжения. В этих диодах используется  наличие у диода критического  обратного напряжения, при котором  наступает электрический пробой.

5) Туннельные диоды - при больших  концентрациях легирующих примесей  заметно усиливается туннельный  эффект p-n-перехода. При этом в  ВАХ диода появляется участок  с отрицательным сопротивлением, что позволяет использовать его  в схемах генерации и усиления электрических колебаний.

6) Импульсные диоды – это  диоды, предназначенные для работы  в импульсных схемах. В таких  диодах перераспределение носителей  зарядов в p-n-переходах при  смене полярности напряжения  происходит в десятые доли  наносекунды. Чем меньше время переходных процессов, тем меньше искажается форма импульсов. Для ускорения переходных процессов уменьшают до возможного предела межэлектродную емкость, а также легируют область p-n-перехода небольшой присадкой золота.

 

Общий принцип действия

В полупроводнике n-типа основными  носителями свободного заряда являются электроны; их концентрация значительно  превышает концентрацию дырок (nn >> np). В полупроводнике p-типа основными носитялеми являются дырки (np >> nn). При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу (рис.1). Пограничная область раздела полупроводников с разными типами проводимости (так называемый запирающий слой) обычно достигает толщины порядка десятков и сотен межатомных расстояний. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение Uз, приблизительно равное 0,35 В для германиевых n–p-переходов и 0,6 В для кремниевых.

Информация о работе Разработка и изготовление лабораторного стенда по изучению вольтамперных характеристик полупроводниковых диодов