Автор работы: Пользователь скрыл имя, 26 Октября 2014 в 14:52, курсовая работа
Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.
1. Введение ………………………………………………………………………3
2. Историческая справка ………………………………………………………..4
3. Экспериментальные методы рентгеноструктурного анализа
3.1. Природа сигналов РСА......……………..……………………………………………..……6
3.2. Формы представления результатов рентгеноструктурного анализа……..……………...8
3.3. Использование результатов рентгеноструктурного анализа для решения проблем в технологии полимеров……………………………………………………………..………..…..9
3.4. Функциональная схема прибора и принцип формирования сигнала……….……….…..9
4. Расшифровка дифрактограмм и обработка результатов анализа
4.1. Определение размера структурных элементов…………………………..………………12
4.2. Определение степени кристалличности полимеров .……………………........................13
5. Определение атомной структуры по данным дифракции рентгеновских лучей ..……………………………………………………………………………16
6. Выводы……………………………………………………………………… ..20
7. Литература ……………………………………………………………………
Итак, если фазы структурных амплитуд установлены, то по (2) может быть вычислено распределение электронной плотности в кристалле, максимумы этого распределения соответствуют положению атомов в структуре (рис. 3). Заключительное уточнение координат атомов проводится на ЭВМ наименьших квадратов методом и в зависимости от качества эксперимента и сложности структуры позволяет получить их с точностью до тысячных долей Å (с помощью современного дифракционного эксперимента можно вычислять также количественные характеристики тепловых колебаний атомов в кристалле с учётом анизотропии этих колебаний). Р. с. а. даёт возможность установить и более тонкие характеристики атомных структур, например распределение валентных электронов в кристалле. Однако эта сложная задача решена пока только для простейших структур. Весьма перспективно для этой цели сочетание нейтронографических и рентгенографических исследований: нейтронографические данные о координатах ядер атомов сопоставляют с распределением в пространстве электронного облака, полученным с помощью Р. с. а. Для решения многих физических и химических задач совместно используют рентгеноструктурные исследования и резонансные методы.
Вершина достижений рентгеноструктурного анализа — расшифровка трёхмерной структуры белков, нуклеиновых кислот и других макромолекул. Белки в естественных условиях, как правило, кристаллов не образуют. Чтобы добиться регулярного расположения белковых молекул, белки кристаллизуют и затем исследуют их структуру. Фазы структурных амплитуд белковых кристаллов можно определить только в результате совместных усилий рентгенографов и биохимиков. Для решения этой проблемы необходимо получить и исследовать кристаллы самого белка, а также его производных с включением тяжёлых атомов, причём координаты атомов во всех этих структурах должны совпадать.
6. Выводы.
Рентгеноструктурный анализ позволяет объективно устанавливать структуру кристаллических веществ, в том числе таких сложных, как витамины, антибиотики, координационные соединения и т.д. Полное структурное исследование кристалла часто позволяет решить и чисто химические задачи, например установление или уточнение химической формулы, типа связи, молекулярного веса при известной плотности или плотности при известном молекулярном весе, симметрии и конфигурации молекул и молекулярных ионов.
Рентгеноструктурный анализ с успехом применяется для изучения кристаллического состояния полимеров. Ценные сведения даёт рентгеноструктурный анализ и при исследовании аморфных и жидких тел. Рентгенограммы таких тел содержат несколько размытых дифракционных колец, интенсивность которых быстро падает с увеличением q. По ширине, форме и интенсивности этих колец можно делать заключения об особенностях ближнего порядка в той или иной конкретной жидкой или аморфной структуре.
Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая превратилась в отдельную отрасль науки. Понятие «рентгенография» включает в себя, наряду с полным или частичным рентгеноструктурным анализом, также и другие способы использования рентгеновских лучей – рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и другое. Определены структуры чистых металлов и многих сплавов. основанная на рентгеноструктурном анализе кристаллохимия сплавов – один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надёжно установленной, если данные сплавы не исследованы методами рентгеноструктурного анализа. Благодаря применению методов рентгеноструктурного анализа оказалось возможным глубоко изучить структурные изменения, протекающие в металлах и сплавах при их пластической и термической обработке.
Методу рентгеноструктурного анализа свойственны и серьёзные ограничения. Для проведения полного рентгеноструктурного анализа необходимо, чтобы вещество хорошо кристаллизовалось и давало достаточно устойчивые кристаллы. Иногда необходимо проводить исследование при высоких или низких температурах. Это сильно затрудняет проведение эксперимента. Полное исследование очень трудоёмко, длительно и сопряжено с большим объёмом вычислительной работы.
Для установления атомной структуры средней сложности (~50- 100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситомеры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). В связи с этим в последние годы для решения задач рентгеноструктурного анализа получили широкое применение быстродействующие ЭВМ. Однако даже с применением ЭВМ определение структуры остаётся сложной и трудоёмкой работой. Применение в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.
Позволяя объективно определить структуру молекул и общий характер взаимодействия молекул в кристалле, исследование методом рентгеноструктурного анализа не всегда даёт возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной для этой цели. Серьёзным ограничением метода является также трудность определения положений лёгких атомов и особенно атомов водорода.
7. Литература