Шпаргалка по дисциплине "Энергетика"

Автор работы: Пользователь скрыл имя, 07 Февраля 2014 в 08:27, шпаргалка

Описание работы

Работа содержит ответы на вопросы для экзамена по дисциплине "Энергетика".

Файлы: 1 файл

энергетика Шпора 4 курс 7 сем.doc

— 1.81 Мб (Скачать файл)

Разъединители горизонтально-поворотного типа выпускаются на напряжение 10 — 750 кВ. Широкое применение этих разъединителей объясняется значительно меньшими габаритами и более простым механизмом управления. В этих разъединителях главный нож состоит из двух частей, так же как у разъединителя РНВ, но они перемещаются в горизонтальной плоскости при повороте колонок изоляторов, на которых закреплены.

В разъединителях 330—750 кВ предусмотрены льдозащитные кожухи, закрывающие контакты.

Более совершенную конструкцию имеют разъединители серии РГ и РГН (рис. 4.28) на напряжение от 35 до 220 кВ, предназначенные для замены разъединителей типа РНД. На несущей раме закрепляются неподвижная 2 и подвижная 5 колонки, на которых крепятся по-лунож двухполосный 3 с разъемным контактом 4 и полунож однополосный.

В установках 330 кВ и выше находят применение разъединители полупантографные с горизонтальным разъемом серии РПГ. На рис. 4.29 показан разъединитель во включенном положении. Контактный нож 7 состоит из двух полуножей, складывающихся в вертикальной плоскости в процессе отключения.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23 Короткозамыкатели  и отделители

Короткозамыкатель — это коммутационный аппарат, предназначенный для создания искусственного КЗ в электрической цепи.

Короткозамыкатели применяются  в упрощенных схемах подстанций (см. подразд. 5.3, 5.8) для того, чтобы обеспечить отключение поврежденного трансформатора после создания искусственного КЗ действием релейной защиты питающей линии. В установках 35 кВ необходимо применять два полюса короткозамыкателя для создания двухфазного КЗ, в установках 110 кВ и выше достаточно одного полюса.

Конструкция КЗ-35 аналогична разъединителю. Ножи, соединенные с заземленной шиной, приводятся в движение пружинным приводом при подаче импульса от релейной защиты и замыкаются на неподвижные контакты, находящиеся под напряжением. Время включения составляет 0,12 — 0,25 с. Отключение производится вручную.

Отделители  серии ОД представляют собой обычный трехполюсный разъединитель, снабженный приводом для автоматического отключения обесточенной цепи. Время отключения достаточно велико — 0,4—0,5 с, что является недостатком конструкции.

Отделители могут отключать  обесточенную цепь или ток намагничивания трансформатора.

Отделители и короткозамыкатели  открытой конструкции недостаточно надежно работают в неблагоприятных погодных условиях (мороз, гололед). В эксплуатации наблюдаются случаи их отказа в работе, поэтому применение их в настоящее время ограничено. Взамен этих конструкций разработаны отделители и короткозамыкатели с контактной системой, расположенной в закрытой камере, заполненной элегазом (КЭ-110, КЭ-220, ОЭ).

Достоинством закрытых короткозамыкателей и отделителей  является четкая работа и малые времена включения (КЭ) и отключения (ОЭ).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24. Измерительные  трансформаторы тока

Трансформатор тока предназначен для уменьшения первичного тока до значений, наиболее удобных  для измерительных приборов и реле, а также для отделения цепей измерения и защиты от первичных цепей высокого напряжения.

Трансформатор тока имеет  замкнутый магнитопровод 2 (рис. 4.55, а) и две обмотки — первичную 1 и вторичную 3. Первичная обмотка включается последовательно в цепь измеряемого тока /(, ко вторичной обмотке присоединяются измерительные приборы, обтекаемые током /2.

Трансформатор тока характеризуется  номинальным коэффициентом трансформации

где I1ном , I2ном — номинальные значения первичного и вторичного тока соответственно.

Значения номинального вторичного тока приняты равными 5 и 1 А.

Коэффициент трансформации  трансформаторов тока не является строго постоянной величиной и может  отличаться от номинального значения вследствие погрешности, обусловленной наличием тока намагничивания. Токовая погрешность определяется по выражению

Погрешность трансформатора тока зависит от его конструктивных особенностей: сечения магнитопровода, магнитной проницаемости материала магнитопровода, средней длины магнитного пути, значения I1 w1.

Погрешность трансформатора тока зависит от вторичной нагрузки (сопротивление приборов, проводов, контактов) и от кратности первичного тока по отношению к номинальному. Увеличения нагрузки и кратности тока приводят к увеличению погрешности

 
Рис. 4.55. Трансформатор тока:

а — принципиальная схема многовиткового трансформатора тока: / — первичная обмотка; 2 — магнитопровод; 3 — вторичная обмотка; б — принципиальная схема одновиткового трансформатора тока; в — конструкция ТПОЛ-20: 1 — вывод первичный; 2 — эпоксидная литая изоляция; 3 — выводы вторичной обмотки

 

Конструкции трансформаторов  тока

Трансформаторы тока для внутренней установки до 35 кВ имеют литую эпоксидную изоляцию.

По типу первичной  обмотки различают катушечные (на напряжение до 3 кВ включительно), одновитковые и многовитковые трансформаторы.

На большие номинальные  первичные токи применяются трансформаторы тока, у которых роль первичной обмотки выполняет шина, проходящая внутри трансформатора

Эти трансформаторы представляют собой кольцеобразный эпоксидный блок с залитым в нем магнитопроводом и вторичными обмотками. Первичной обмоткой является шина токопровода.

В установках 330 кВ и более  применяются каскадные трансформаторы тока ТФРМ с

 

 

рымовидной обмоткой, расположенной внутри фарфорового изолятора, заполненного трансформаторным маслом.

Встроенные трансформаторы тока применяются в установках 35 кВ и более. В вводы высокого напряжения масляных выключателей и силовых трансформаторов встраиваются магнитопроводы со вторичными обмотками. Первичной обмоткой является токоведущий стержень ввода.

Оптико-электронные  измерительные трансформаторы

Чем выше напряжение, тем  труднее изолировать первичную  обмотку ВН от вторичной, измерительной  обмотки трансформаторов. Каскадные измерительные трансформаторы на 500, 750 и 1150 кВ сложны в изготовлении и дороги, поэтому взамен их разработаны принципиально новые оптико-электронные трансформаторы (ОЭТ). В них измеряемый сигнал (ток, напряжение) преобразуется в световой поток, который изменяется по определенному закону и передается в приемное устройство, расположенное на заземленном элементе. Затем световой поток преобразуется в электрический

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 Измерительные трансформаторы напряжения

Трансформатор напряжения предназначен для понижения  высокого напряжения до стандартного значения 100 или 100/ В и для отделения цепей измерения и релейной защиты от первичных цепей высокого напряжения. Схема включения однофазного трансформатора напряжения показана на рис. 4.59, первичная обмотка включена на напряжение сети Uh а ко вторичной обмотке (напряжение U2) присоединены параллельно катушки измерительных приборов и реле. Для безопасности обслуживания один выход вторичной обмотки заземлен. Трансформатор напряжения в отличие от трансформатора тока работает в режиме, близком к холостому ходу, так как сопротивление параллельных катушек приборов и реле большое, а ток, потребляемый ими, невелик.

Номинальный коэффициент  трансформации определяется следующим выражением:

где U1 ном, U2 ном — номинальные первичное и вторичное напряжение соответственно.

Рассеяние магнитного потока и потери в сердечнике приводят к погрешности измерения

Так же как и в трансформаторах тока, вектор вторичного напряжения сдвинут относительно вектора первичного напряжения не точно на угол 180°. Это определяет угловую погрешность.

 

Рис. 4.59. Схема включения  трансформатора напряжения:

/ — первичная обмотка; 2 — магнитопровод; 3 — вторичная обмотка

Погрешность зависит  от конструкции магнитопровода, магнитной проницаемости стали и от cos вторичной нагрузки. В конструкции трансформаторов напряжения предусматривается компенсация погрешности по напряжению путем некоторого уменьшения числа витков первичной обмотки, а также компенсация угловой погрешности за счет специальных компенсирующих обмоток.

Конструкции трансформаторов  напряжения

По конструкции различают трехфазные и однофазные трансформаторы. Трехфазные трансформаторы напряжения применяются при напряжении до 18 кВ, однофазные — на любые напряжения. По типу изоляции трансформаторы могут быть сухими, масляными и с литой изоляцией.

Трансформаторы напряжения с масляной изоляцией применяются на напряжение 6— 1150 кВ в закрытых и открытых распределительных устройствах. В этих трансформаторах обмотки и магнитопровод залиты маслом, которое служит для изоляции и охлаждения.

Все шире применяются трансформаторы напряжения с литой изоляцией. Заземляемые трансформаторы напряжения серии ЗНОЛ.06 имеют пять исполнений по номинальному напряжению: 6, 10, 15, 20 и 24 кВ. Магнитопровод в них ленточный, разрезной, С-образный, что позволило увеличить класс точности до 0,2.

В установках 110 кВ и выше применяются  трансформаторы напряжения каскадного типа НКФ. В этих трансформаторах обмотка ВН равномерно распределяется по нескольким магнитопроводам, благодаря

 

 

чему облегчается ее изоляция. Для  равномерного распределения нагрузки по обмоткам ВН служит обмотка связи  П. Такой блок, состоящий из магнитопровода и обмоток, помещается в фарфоровую рубашку и заливается маслом.

Трансформаторы напряжения (TV) на 220 кВ состоят из двух блоков, установленных один над другим, т.е. имеют два магнитопровода и четыре ступени каскадной обмотки ВН с изоляцией на иф/4.

 

 

 

26. Первичные  схемы станций

Главная схема электрических  соединений электростанции (подстанции) — это совокупность основного электрооборудования (генераторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями. Выбор главной схемы является определяющим при проектировании электрической части электростанции (подстанции), так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собственных нужд, схем вторичных соединений, монтажных схем и т. д. На чертеже главные схемы изображаются в однолинейном исполнении, при отключенном положении всех элементов установки. В условиях эксплуатации наряду с принципиальной главной схемой применяются упрощенные оперативные схемы, в которых указывается только основное оборудование. Дежурный персонал каждой смены заполняет оперативную схему и вносит в нее необходимые изменения в части положения выключателей и разъединителей, происходящие во время дежурства. При проектировании электроустановки до разработки главной схемы составляется структурная схема выдачи электроэнергии, на которой показываются основные функциональные части электроустановки (распределительные устройства, трансформаторы, генераторы) и связи между ними. Структурные схемы служат для дальнейшей разработки более подробных и полных принципиальных схем, а также для общего ознакомления с работой электроустановки. На чертежах этих схем функциональные части изображаются в виде прямоугольников или условных графических изображений. Никакой аппаратуры (выключателей, разъединителей, трансформаторов тока и т. д.) на схеме не показывают. Главная схема без некоторых аппаратов - трансформаторов тока, напряжения, разрядников - упрощенная принципиальная схема. На полной принципиальной схеме указывают все аппараты первичной цепи, заземляющие ножи разъединителей и отделителей, указывают также типы применяемых аппаратов. В оперативной схеме условно показаны разъединители и заземляющие ножи. Действительное положение этих аппаратов (включено, отключено) показывается на схеме дежурным персоналом каждой смены.

 

 

При выборе схем электроустановок должны учитываться следующие факторы:

Значение и  роль электростанции или подстанции для энергосистемы. Электростанции, работающие параллельно в энергосистеме, существенно отличаются по своему назначению. Одни из них несут основную нагрузку, другие, пиковые, работают во время максимальных нагрузок, третьи несут электрическую нагрузку, определяемую их тепловыми потребителями (ТЭЦ).

Положение электростанции или подстанции в энергосистеме, схемы и напряжения прилегающих  сетей. Шины высшего напряжения электростанций и подстанций могут быть узловыми точками энергосистемы, осуществляя объединение на параллельную работу нескольких электростанций. В этом случае через шины происходит переток мощности из одной части электросистемы в другую — транзит мощности. Подстанции могут быть тупиковыми, проходными, отпаечными; схемы таких подстанций будут различными даже при одном и том же числе трансформаторов одинаковой мощности.

Категория потребителей по степени надежности электроснабжения. Все потребители с точки зрения надежности электроснабжения разделяются на три категории.

Перспектива расширения сети. Схема и компоновка распределительного устройства должны выбираться с учетом возможного увеличения количества присоединений при развитии энергосистемы.

Из сложного комплекса  предъявляемых условий, влияющих на выбор главной схемы электроустановки, можно выделить основные требования к схемам:

надежность электроснабжения потребителей;

приспособленность к  проведению ремонтных работ;

оперативная гибкость электрической  схемы;

экономическая целесообразность.

Надежность - свойство электроустановки, участка электрической сети или энергосистемы в целом обеспечить бесперебойное электроснабжение потребителей электроэнергией нормированного качества. Повреждение оборудования в любой части схемы по возможности не должно нарушать электроснабжение, выдачу электроэнергии в энергосистему, транзит мощности через шины.

Приспособленность электроустановки к проведению ремонтов определяется возможностью проведения ремонтов без нарушения или ограничения электроснабжения потребителей. Есть схемы, в которых для ремонта выключателя надо отключать данное присоединение на все время ремонта, в других схемах требуется лишь временное отключение отдельных присоединений для создания специальной ремонтной схемы; в третьих ремонт выключателя производится без нарушения электроснабжения даже на короткий срок.

Оперативная гибкость электрической схемы определяется ее приспособленностью для создания необходимых эксплуатационных режимов и проведения оперативных переключений.

Информация о работе Шпаргалка по дисциплине "Энергетика"