Шпаргалка по "Физике"

Автор работы: Пользователь скрыл имя, 24 Мая 2013 в 11:46, шпаргалка

Описание работы

Работа содержит ответы на 29 вопросов по дисциплине "Физика".

Файлы: 1 файл

шпоры по физике.docx

— 99.88 Кб (Скачать файл)

1 Билет.

1.Эл. заряд - физич. величина, определяет интенсивность эл/магнитных взаимодействий. Существует 2 знака эл.зарядов: положительный и отрицательный.Частицы с одноименными зарядами отталкиваются, с разноименными - притягиваются. Протон имеет положительный заряд, электрон - отрицательный, нейтрон - электрически нейтрален 2..В замкнутой системе при любых взаимодействиях тел алгебраиче-ская сумма зарядов всех тел остается постоянной.3. Силы взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению абсолютных значений зарядов и обратно пропорциональна квадрату расстояния между ним: Если тела находятся в среде с диэлектрической проницаемостью  , тогда сила взаимодействия будет ослабляться в   раз:4. Электрическое полеВзаимодействие электрических зарядов объясняется тем, что вокруг каждого заряда существует электрическое поле. Электрическое поле заря-да – это материальный объект, оно непрерывно в пространстве и способно действовать на другие электрические заряды. Электрическое поле неподвижных зарядов называется электростатическим. Электростатическое поле создается только электрическими зарядами, существует в пространстве, окружающем эти заряды и неразрывно с ними связано.5. Напряженность электрического поля – это физическая величина, численно равная силе, действующей на единичный заряд, помещенный в данную точку поля. 6. Линии напряженности электрического поля (силовые линии) – это линии, касательные к которым в каждой точке совпадают с вектором напряженности. Силовые линии:- имеют начало и конец;- начинаются на положительном заряде или в бесконечности- кончаются на отрицательном заряде или в бесконечности- нигде не пересекаются. 7. ПРИНЦИП СУПЕРПОЗИЦИИ ( НАЛОЖЕНИЯ ) ПОЛЕЙ. Если в данной точке пространства различные электрически заряженные частицы 1, 2, 3... и т.д. создают электрические поля с напряженностью Е1, Е2, Е3 ... и т.д., то результирующая напряженность в данной точке поля равна геометрической сумме напряженностей. 8. Диполь (от ди... и греч. pólos — полюс) электрический, совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга. Основной характеристикой электрического Д. является его дипольный момент — вектор, направленный от отрицательного заряда к положительному (рис. 1) и численно равный произведению заряда е на расстояние l между зарядами:р = el. 9.

 

2 Билет.

Число линий вектора E, пронизывающих  некоторую поверхность S, называется потоком вектора напряженности NE. 2. Теорема Гаусса — основная теорема  электродинамики, которая применяется  для вычисления электрических полей. Она выражает связь между потоком  напряжённости электрического поля сквозь замкнутую поверхность и  зарядом в объёме, ограниченной этой поверхностью.

 

3 Билет.

1.Электростатическое поле - эл. поле неподвижного заряда. Fэл , действующая на заряд, перемещает его, совершая раборту. В однородном электрическом поле Fэл = qE - постоянная величина. 2. Циркуля́цией ве́кторного по́ля называется криволинейный интеграл второго рода, взятый по произвольному замкнутому контуру Γ. По определению. 3. Электростатический потенциа́л (см. также кулоновский потенциал) — скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию поля, которой обладает единичный заряд, помещённый в данную точку поля. Единицей измерения потенциала является, таким образом, единица измерения работы, деленная на единицу измерения заряда (для любой системы единиц; подробнее о единицах измерения — см. ниже). 4. Электромагнитный потенциал — четырёхмерная величина (4-вектор), характеризующая электромагнитное поле. Играет фундаментальную роль как в классической, так и в квантовой электродинамике. 5. Электромагнитный потенциал можно представить состоящим из потенциалов электромагнитного поля φ и A, рассматриваемых в традиционной трехмерной формулировке электродинамики как отдельные величины, определяющие вместе электромагнитное поле: скалярного (в трёхмерном смысле) потенциала φ, вместе с A определяющего электрическое поле;в частности, для постоянных полей или при условиях, позволяющих пренебречь быстротой их изменения, скалярный потенциал выступает как Электростатический потенциал — через который электростатическое поле определяется полностью;и векторного потенциала A — трёхмерного вектора, полностью определяющего магнитное поле, а электрическое поле определяющего вместе с φ. 6.  Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность E направлена в сторону убывания потенциала. E = - grad  = -Ñ. 7. Эквипотенциальные поверхности. Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью. Между двумя любыми точками на эквипотенциальной поверхности разность потенциалов равна нулю, поэтому работа сил электрического поля при любом перемещении заряда по эквипотенциальной поверхности равна нулю. Это означает, что вектор силы  в любой точке траектории движения заряда по эквипотенциальной поверхности перпендикулярен вектору скорости. Следовательно, линии напряженности электростатического поля перпендикулярны эквипотенциальной поверхности. Эквипотенциальными поверхностями поля точечного электрического заряда являются сферы, в центре которых расположен заряд. 8.\

 

4 Билет.

Вещество или материальное тело, в котором имеются заряды, способные  переносить электрический ток, называется проводником. В металлах переносчиками  тока служат свободные (т.е. не привязанные  к атомам) электроны, в электролитах — ионы, в плазме — и электроны, и ионы. Для электростатических явлений поле внутри проводника равно нулю: Внесем пластину проводника в электрическое поле, назовем это поле внешним.  Под действием внешнего поля свободные электроны, имеющиеся в пластине, начнут перемещаться  и в огромном количестве соберутся у левой поверхности пластины. 2. Явление возникновения электрических зарядов на проводнике под воздействием электрического поля называется электростатической индукцией, а возникшие заряды – индуцированными. Появившиеся индуцированные заряды создают собственное индуцированное электрическое поле , которое направлено в сторону, противоположную внешнему полю (рис. 226). Конечно, эти заряды создают поле как внутри проводника, так и вне его. Суммарное поле  отличается от внешнего поля. 3. Электростатическое экранирование обеспечивает экранирующий эффект, равный бесконечности при постоянном поле (f=0), который с ростом частоты уменьшается. Это обусловлено частотной зависимостью волнового сопротивления диэлектрика относительно электрического поля и природой экранирования статического электрического поля. Электростатическое экранирование состоит в замыкании электрического поля на поверхности металлической массы экрана и передачи электрических зарядов на землю или корпус прибора. Если, например, между проводом а, несущим помеху, и проводом б. подверженным влиянию, поместить экран, соединенный с землей и корпусом прибора, то экран будет перехватывать электрические силовые линии, защищая провод б от помех. 4. В диэлектриках практически нет свободных электронов поэтому ток по ним не проходит.  Внесём в электрическое поле, которое назовём внешним пластинку диэлектрика, например стекла. Под влиянием внешнего электрического поля происходит поляризация диэлектрика.  Это значит, что электроны в атомах начинают вращаться по вытянутым орбитам. В результате, на нашем рисунке левая поверхность имеет отрицательный заряд, а правая поверхность имеет положительный заряд. Между  этими зарядами внутри диэлектрика возникает своё электрическое поле, которое назовём внутренним. Таким образом, внутри пластинки диэлектрика будут одновременно два поля- внешнее и внутреннее, противоположные по направлению.Напряжённость результирующего электрического поля равна напряжённости большего поля минус напряженность меньшего поля. 5. Диэлектрик называют неполярным, если в его молекулах в отсутствие внешнего электрического поля центры тяжести отрицательных и положительных зарядов совпадают, например,  Для них дипольный момент , т. к. . И, следовательно, суммарный дипольный момент неполярного диэлектрика. В молекулах полярных диэлектриков (, спирты, НС1...) центры тяжести зарядов разных знаков сдвинуты друг относительно друга. В этом случае молекулы обладают собственным дипольным моментом . Но эти дипольные моменты в отсутствие внешнего электрического поля из-за теплового движения молекул ориентированы хаотически и суммарный дипольный момент такого диэлектрика равен нулю, т. е. 6. Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно. Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

 

5 Билет

В диэлектрике наличие электрического поля не препятствует равновесию зарядов. Сила, действующая на заряды в диэлектрике  со стороны электрического поля, уравновешивается внутримолекулярными силами, удерживающими  заряды в пределах молекулы диэлектрика, так что в диэлектрике возможно равновесие зарядов, несмотря на наличие  электрического поля. Конечно, как мы уже указывали в § 3, разделение тел на проводники и диэлектрики  условно. При достаточно большой  напряженности поля и в диэлектрике  возможно заметное перемещение зарядов, ведущее к пробою диэлектрика. Однако при общепринятом разделении тел на проводники и диэлектрики мы можем сказать, что в случае равновесия зарядов электрическое поле внутри проводника (например, металла) отсутствует, а электрическое поле в диэлектрике (например, в стекле) может существовать. 2. Вектор поляризации — векторная физическая величина, наведённый внешним электрическим полем дипольный момент единицы объёма вещества, количественная характеристика диэлектрической поляризации Для количественной характеристики поляризации диэлектриков вводят понятие вектора поляризации  как полного (суммарного) дипольного момента всех молекул в единице объема диэлектрика:,  - дипольный момент одной молекулы.Суммирование производится по всем молекулам, находящимся в объеме. диэлектри́ческая проница́емость среды ε — безразмерная физическая величина, характеризующая свойства изолирующей (диэлектрической) среды. Связана с эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды). Величина ε показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Относительная диэлектрическая проницаемость воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постоянная воды в статическом поле достаточно высока — около 80. Диэлектри́ческая восприи́мчивость (или поляризу́емость) вещества — физическая величина, мера способности вещества поляризоваться под действием электрического поля. Диэлектрическая восприимчивость — коэффициент линейной связи между поляризацией диэлектрика P и внешним электрическим полем E в достаточно малых полях. 3. Учитывают поляризацию с помощью вектора поляризации , который для анизотропных и однородных сред выражается через напряженность поля следующим образом: , где c – диэлектрическая восприимчивость вещества (диэлектрика). Вектор поляризации равен также поверхностной плотности связанных зарядов, возникающих в диэлектрике под воздействием внешнего электрического поля (Р = sсвяз ). Решение: Вектор напряженности электростатического поля направлен в сторону убывания потенциала Если снизу вверх потенциал возрастает, то вектор напряженности направлен сверху вниз. 4. Сегнетоэле́ктрики (названы по первому материалу, в котором был открыт сегнетоэлектрический эффект — сегнетова соль) — твёрдые диэлектрики (некоторые ионные кристаллы и пьезоэлектрики), обладающие в определённом интервале температур собственным электрическим дипольным моментом, который может быть переориентирован за счёт приложения внешнего электрического поля. Сегнетоэлектрические материалы обладают гистерезисом по отношению к электрическому дипольному моменту. 5. Пьезоэлектри́ческий эффе́кт — эффект возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект). Существует и обратный пьезоэлектрический эффект — возникновение механических деформаций под действием электрического поля.

 

 

 

 

6 Билет

Электроемкость уединенного проводникаУединенным называется проводник, расположенный вдали от других заряженных и незаряженных тел так, что они не оказывают на этот проводник никакого влияния. Электроемкость уединенного проводника — физическая величина, равная отношению электрического заряда уединенного проводника к его потенциалу:  или . Электроемкостью конденсатора называют физическую величину, численно равную отношению заряда конденсатора к разности потенциалов между его обкладками: или Из этой формулы видно, что чем больше напряжение между обкладками конденсатора, тем больше на них заряд. Но для каждого конденсатора существует предельное (максимальное) напряжение, выше которого диэлектрик начнет разрушаться. При этом заряды обкладок конденсатора мгновенно нейтрализуются, происходит пробой, т.е. конденсатор выходит из строя. 2. Последовательное и параллельное соединения в электротехнике — два основных способа соединения элементов электрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.При последовательном соединении проводников сила тока во всех проводниках одинакова.При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

 

 

7 Билет

Энергия конденсатора приблизительно равна квадрату напряженности эл. поля внутри конденсатора. Плотность энергии эл. поля конденсатора: 2. Это физическая величина, численно равная отношению потенциальной энергии поля, заключенной в элементе объема, к этому объему. Для однородного поля объемная плотность энергии равна . Для плоского конденсатора, объем которого Sd, где S - площадь пластин, d - расстояние между пластинами, имеемС учетом, что и.

 

 

9 билет

   правила, устанавливающие  соотношения для токов и напряжений  в разветвленных электрических  цепях постоянного или квазистационарного тока (См. Квазистационарный ток). Сформулированы Г. Р. Кирхгофом в 1847. Первое К. п. вытекает из закона сохранения заряда и состоит в том, что алгебраическая сумма сил токов lk, сходящихся в любой точке разветвления проводников (узле), равна нулю, т. е. l — число токов, сходящихся в данном узле, причём токи, притекающие к узлу, считаются положительными, а токи, вытекающие из него,— отрицательными. Второе К. и. в любом замкнутом контуре, произвольно выделенном в сложной сети проводников алгебраическая сумма всех падений напряжений lkRk на отд. участках контура равна алгебраической сумме электродвижущих сил (эдс) Ek в этом контуре, т. е.  здесь m — число участков в замкнутом контуре (на рис. m = 3), Ik и Rk — сила тока и сопротивление участка номера k; при этом следует выбрать положительное направление токов и эдс, например, считать их положительными, если направление тока совпадает с направлением обхода контура по часовой стрелке, а ЭДС повышает потенциал в направлении этого обхода, и отрицательными — при противоположном направлении. Второе К. п. получается в результате применения Ома закона к различным участкам замкнутой цепи

Информация о работе Шпаргалка по "Физике"