Силовые трансформаторы

Автор работы: Пользователь скрыл имя, 23 Апреля 2013 в 13:12, реферат

Описание работы

Целью данной работы является необходимость описать силовые трансформаторы промышленных предприятий и их выбор.
Достижение данной цели предполагает решение ряда следующих задач:
1. Описать общие требования и условия работы силовых трансформаторов.
2. Описать процесс выбора силовых трансформаторов.
3. Охарактеризовать трансформаторы главных понижающих подстанций.

Содержание работы

Введение
Общие требования и условия работы силовых трансформаторов
Выбор силовых трансформаторов
Трансформаторы главных понижающих подстанций
Заключение
Список используемой литературы

Файлы: 1 файл

Силовые трансформаторы.doc

— 266.50 Кб (Скачать файл)

Силовые трансформаторы

Содержание

 

Введение

Общие требования и условия работы силовых  трансформаторов

Выбор силовых трансформаторов

Трансформаторы  главных понижающих подстанций

Заключение

Список  используемой литературы

Введение

 

Данная тема является чрезвычайно актуальной, так как в системах электроснабжения промышленных предприятий главные понизительные и цеховые подстанции используют для преобразования и распределения электроэнергии, получаемой обычно от энергосистем. На всех подстанциях для изменения напряжения переменного тока служат силовые трансформаторы различного конструктивного исполнения, выпускаемые в широком диапазоне номинальных мощностей и напряжений.

Выбор трансформаторов заключается в  определении их требуемого числа, типа, номинальных напряжений и мощности, а также группы и схемы соединения обмоток.

Цеховые трансформаторные подстанции (ТП) в  настоящее время часто выполняются  комплектными (КТП), и во всех случаях, когда этому не препятствуют условия  окружающей среды и обслуживания, устанавливаются открыто.

Правильное  определение числа и мощности цеховых трансформаторов возможно только с учетом следующих факторов: категории надежности электроснабжения потребителей; компенсации реактивных нагрузок на напряжении до 1 кВ; перегрузочной  способности трансформаторов в нормальном и аварийном режимах; шага стандартных мощностей; экономичных режимов работы трансформаторов в зависимости от графика.

Целью данной работы является необходимость  описать силовые трансформаторы промышленных предприятий и их выбор.

Достижение данной цели предполагает решение ряда следующих задач:

1. Описать общие требования и  условия работы силовых трансформаторов.

2. Описать процесс выбора силовых  трансформаторов.

3. Охарактеризовать трансформаторы  главных понижающих подстанций.

В процессе написания данной работы нами была использована монографическая, учебная и публицистическая литература.

Общие требования и условия  работы силовых трансформаторов

 

Силовые трансформаторы являются основой  системы электроснабжения крупных  предприятий, имеющих в своем составе главные понижающие подстанции – ГПП (5УР), в средних предприятиях, имеющих распределительные подстанции – РП на 6;10 кВ (4УР) с разветвленными высоковольтными сетями и несколькими трансформаторными подстанциями ТП на 6;10 кВ(3УР). Производственная деятельность малых предприятий, как правило, имеющих в своем составе одну – две ТП на 6;10/0,4КВ, во многом зависит от надежной работы силовых трансформаторов [щитов и шкафов, распределительных пунктов РП на 0,4кВ (2УР)]. В реальных условиях каждый из шести уровней системы электроснабжения может быть границей раздела предприятие – энергосистема, решения по которой юридически согласовываются между энергоснабжающими организациями и потребителем (абонентом) [1, с. 10].

По расчетной электрической нагрузке Рр предприятия определяется необходимость сооружения ГПП (или ПГВ – подстанции глубокого ввода, или ОП – опорной подстанции электроснабжения предприятия). Наиболее распространенное число подстанций с напряжением пятого уровня на одном предприятии одна – две, но бывает до двух и более десятков. ГПП принимают электроэнергию от трансформаторов энергосистемы или, например, от блочной ТЭЦ или гидроэлектростанции (ГРЭС). Высшее напряжение трансформаторов ГПП в России35,110,154,220,330кВ; питание подводится по воздушным и кабельным линиям электропередач (ЛЭП). Отходящие от ГПП высоковольтные распределительные сети, рассчитанные на 6;10 кВ (хотя могут быть и на 110кВ), называют межцеховыми (заводскими). Обычно ряд мощностей ГПП: 10,16,25,40,63,80,110, 125МВ∙А, а в отдельных случаях и выше.

Для электроснабжения потребителей напряжением  до 1 кВ (220,380,500,600В) сооружают трансформаторные подстанции с высшим напряжением  чаще всего на 6;10 кВ (но существуют подстанции, напряжением 3,20 кВ), которые обычно называют цеховыми, а с учетом комплектной поставки (с транформаторами, щитом низкого напряжения и оцинковкой, вводным высоковольтным отключающим устройством) их обозначают КТП. Ряд применяемых мощностей ТП:100, 160,250,400, 630, 1000, 1600,2500кВ∙А. Из – за больших токов короткого замыкания (КЗ) на стороне 0,4кВ, вызывающих сложности коммутации и передачи электроэнергии приемникам, трансформаторы на 2500кВ∙А применяются только в специальных случаях [1, с. 11].

Кроме трансформаторов, устанавливаемых  на 5 УР для присоединения предприятия к энергосистеме, и трансформаторов, устанавливаемых на 3УР, обеспечивающих потребителей низким (до 1кВ) напряжением трехфазного переменного тока, существуют специальные подстанции со своими силовыми трансформаторами: печными, выпрямительными (для создания сети постоянного тока до 1,5кВ), преобразовательными, сварочными и другими, которые могут использоваться и как ГПП, и как цеховые ТП.

Решение о строительстве трансформаторной подстанции принимается в составе  решения о строительстве завода (цеха). Особенностью решения о строительстве трансформаторной подстанции является то, что она не выделяется, а рассматривается и утверждается как часть предприятия, сооружения – объекта, подлежащего новому строительству, реконструкции, модернизации, расширению перевооружению. Конечно, для электриков подстанции и сети являются самостоятельными объектами, согласование параметров которых с субъектами электроснабжения, а также их последующее проектирование, строительство и принятие в эксплуатацию осуществляется по отдельным срокам и графикам, не зависящих от основного производства [3, с. 23].

Принятие технологического решения  начинается с утверждения технологического задания на строительство завода определенного состава. По технологическим  данным оценивают параметры энергопотребления, определяют нагрузку по цехам (для выбора мощности цеховых трансформаторов и выявления высоковольтных двигателей) и заводу в целом (для выбора ГПП, их числа и единичной мощности трансформаторов на каждой подстанции).

Готовые решения служат материалом для получения технических условий от энергосберегающей организации (энергосистемы). Одновременно собирают следующие сведения: особенности энергосистемы и вероятных мест присоединения потребителей; данные по объектам – аналогам и месту строительства. Определяющими данными на начальном этапе являются:

- значения расчетного максимума  нагрузки и число часов использования  этого максимума, связанных с  электропотреблением;

- схема примыкающей районной  энергосистемы с характеристиками  источников питания, и сетей внешнего электроснабжения, позволяющая решать вопрос выбора мощности трансформатора и схемы его присоединения (размещение трансформатора следует увязывать с заходами ЛЭП) [1, с. 12].

Предложения или проектные проработки по выбору трансформатора 3УР (в диапазоне мощности 100…..2500кВ∙А), определяются условиями потребителя, а для средних и крупных предприятий – особенностями энергосистемы, к сетям которой они подключены.

Основными параметрами, определяющими  конструктивное выполнение и построение сети являются:

- для линий электропередачи  – номинальное напряжение, направление  (откуда и куда), протяженность,  число цепей, сечение провода;

- для подстанций – сочетание  номинальных напряжений, число и  мощность трансформаторов, схема  присоединения к сети и компенсация реактивной мощности [1, с. 12].

В России сложились две системы  электрических сетей на номинальные  напряжения 110 кВ и выше (110, 200, 500кВ), принятая на востоке страны, и 110(154), 330, 750 кВ, принятая в западной части  страны.

Для электроэнергетики страны это  означает:

- увеличение потерь электроэнергии  из – за повышения числа  ее трансформаций, необходимость  создания сложных коммутационных  узлов и ограничения пропускной  способности межсистемных связей;

- дополнительную нагрузку предприятий электропромышленности, то есть номенклатуры выпускаемых видов продукции;

- финансирование дополнительного  строительства подстанций и линий  передач предприятиям, попавшим  в зону «стыковки»;

- необходимость учета тенденций  развития электрохозяйства, то есть расчет и прогнозирование параметров электропотребления.

Таким образом, подводя итог, необходимо сделать следующие выводы.

На всех подстанциях для изменения  напряжения переменного тока служат силовые трансформаторы различного конструктивного исполнения, выпускаемые в широком диапазоне номинальных мощностей и напряжений.

Выбор трансформаторов заключается  в определении их требуемого числа, типа, номинальных напряжений и мощности, а также группы и схемы соединения обмоток.

 

II. Выбор силовых трансформаторов

 

Для правильно выбора номинальной  мощности трансформатора (автотрансформатора), необходимо располагать суточным графиком, отражающим как максимальную, так  и среднесуточную активную нагрузки данной подстанции, а также продолжительность  максимума нагрузки [1, с. 14]. При отсутствии суточного графика с достаточной для практических целей определяется расчетный уровень максимальной активной нагрузки подстанции Pmax (МВт).

Если при выборе номинальной  мощности трансформатора на однотрансформаторной подстанции исходить из условия:

(1)

 

(здесь ∑Pmax – максимальная активная  мощность на пятом году эксплуатации  – сроке, в условиях рыночной  экономики согласованном с инвестором; Pр – проектная расчетная мощность подстанции), то есть при графике работы с кратковременным пиком нагрузки (0,5…..1,0ч)трансформатор будет длительное время недогружен. При этом неизбежно завышение номинальной мощности трансформатора и, следовательно, завышение установленной мощности подстанции. В ряде случаев более выгодно выбирать номинальную мощность трансформатора близкой к максимальной нагрузке достаточной продолжительности и в полной мере использовать ее перегрузочную способность с учетом систематических перегрузок в нормальном режиме [1, с. 15].

Наиболее экономичной работа трансформатора по ежегодным издержкам и потерям  будет в случае, когда в часы максимума он будет работать с  перегрузкой. В реальных же условиях значения допустимой нагрузки выбирают в соответствии с графиком нагрузки и коэффициентом начальной нагрузки, а также в зависимости от температуры окружающей среды, при которой работает трансформатор.

Коэффициент нагрузки, или коэффициент  заполнения суточного графика нагрузки, практически всегда меньше единицы.

 

(2)

 

где Pc, Pmax и Ic и Imax – соответственно среднесуточные и максимальные мощности и токи.

В зависимости от коэффициента суточного  графика нагрузки (коэффициента начальной нагрузки и длительности максимума), эквивалент температуры окружающей среды, постоянной времени трансформатора и вида его охлаждения, допустимы систематические перегрузки трансформаторов.

На  рисунке 1 приведены фактический  суточный график нагрузки и двухступенчатый, эквивалентный фактическому. С нуля часов начинается ночной провал нагрузки (от условно номинальной, равной 1,0), минимальный между 5 и 6 ч. (для объекта провал может быть и другие часы, например, между 3 и 5ч). С 6 ч. начинается подъем нагрузки до дневной, обычно незначительно колеблющейся вокруг некоторого значения (но возможно наличие утреннего пика перегрузки, например, между 9 и 11 ч.) В 20 ч. нагрузка достигает номинального значения (1,0), а затем превосходит его, образовав пиковую часть графика, и лишь к 14 ч. вновь снижается до 1,0.

Реальный (фактический) график суточной нагрузки можно преобразовать в двухступенчатый. Для чего в виду невозможности  из-за ценологических свойств получить аналитическую зависимость Рнагр =∫ (t), реальный график разбивают на интервалы, в которых нагрузка осредняется. Эти интервалы могут составлять от 3 мин. до 0,5 ч. Интегрированием определяют площадь под фактическим графиком, а затем строят эквивалентный, в данном случае для периодов 0…..20ч. и 20….24 ч.

 

Рис.1 Расчетные графики нагрузки

1 – фактический суточный; 2- двухступенчатый,  эквивалентный физическому.

Первый  период характеризуется коэффициентом  начальной нагрузки kи.н., равным 0,705 (физический смысл kи.н. – отношение  площади под графиком, характеризующим работу трансформатора с номинальной нагрузкой в период 0….. 20ч., к фактической нагрузке, представленной ступенью, составляющей по оси ординат 0,705 номинальной). Аналогично для второго периода определяют коэффициент перегрузки k пер. = 1,27.

Таким образом, перегрузки определяются преобразованием  заданного графика нагрузки в  график, эквивалентный ему в тепловом отношении. Допустимая нагрузка трансформатора зависит от его начальной нагрузки, ее максимума и его продолжительности и характеризуется коэффициентом превышения (перегрузки), определяемой выражением:

 

(3)

 

а коэффициент начальной нагрузки:

 

(4)

 

где Iэ max – эквивалентный максимум нагрузки; Iэ.н. – эквивалентная начальная  нагрузка, определяемая за 10ч. предшествующие началу ее максимума.

Эквивалентный максимум нагрузки (и  эквивалентная начальная нагрузка) определяется по формуле:

 

(5)

 

где a1, a2 ……..an – различные ступени  средних значений нагрузок в долях  номинального тока; t1,t2,………tn – длительность этих нагрузок, ч.

Формулы (3) и (4) используются для упрощения  расчетов по сравнению с построением  графиков, заданных на рис.1, если ступень  задана или делаются проектные предположения. Следует также иметь в виду, что kи.н. определяется не за 20ч., а за 10ч. во всех случаях формула (5) дает правильный результат.

Допустимые систематические перегрузки трансформаторов определяются нагрузочной  способностью, задаваемой с помощью  таблиц или же графически. Коэффициент  перегрузки k пер. дается в зависимости  от среднегодовой температуры воздуха tс.г., вида охлаждения и мощности трансформаторов, коэффициента начальной нагрузки kи.н. и продолжительности двухчасового эквивалентного максимума нагрузки tmax. Для других значений tmax. допускаемый k пер. можно определить по кривым нагрузочной способности трансформатора.

Если максимум графика нагрузки в летнее время меньше номинальной  мощности трансформатора, то в зимнее время допускается длительная 1% - перегрузка трансформатора на каждый процент недогрузки летом, но не более, чем на 15%. Суммарная систематическая перегрузка трансформатора не должна превышать 150%. При отсутствии систематических перегрузок допускается длительная нагрузка трансформаторов током на 5% выше номинального при условии, что напряжение каждой из обмоток не будет превышать номинальное.

Информация о работе Силовые трансформаторы