Солнечные электростанции

Автор работы: Пользователь скрыл имя, 01 Декабря 2013 в 09:32, реферат

Описание работы

Солнечная электростанция - инженерное сооружение, служащее преобразованию солнечной радиации в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.

Содержание работы

1
Обзорная часть
3
2
Преобразование солнечной радиации в электрический ток
4
2.1
Машинное преобразование солнечной энергии в электричество
4
2.2
Термоэлектрический метод
6
2.3
Термоэмиссионный преобразователь
7
2.4
Фотоэлектрический метод преобразования энергии
8
3
Типы солнечных электростанции
10
3.1
Солнечные параболические концентраторы
10
3.2
Солнечная установка тарельчатого типа
11
3.3
Солнечные электростанции башенного типа с центральным приемником
12
3.4
Сопоставление технических характеристик
13
4
Направления научных исследований в солнечной энергетики
15
4.1
Фундаментальные исследования
15
4.2
Прикладные исследования
15
4.3
Экологические проблемы
16
4.4
Солнечная энергетика сегодня: достижения и перспективы
17
4.5 Стратегия и тактика частного бизнеса по "производству солнечной энергии"
18

Литература
19

Файлы: 1 файл

Солнечные электростанции.doc

— 271.00 Кб (Скачать файл)

Построенные в 80-х годах  в южно-калифорнийской пустыне фирмой “Luz International”, девять таких систем образуют крупнейшее на сегодняшний день предприятие  по производству солнечного теплового электричества. Эти электростанции поставляют электричество в коммунальную электросеть Южной Калифорнии. Еще в 1984 г. “Luz International” установила в Деггетте (Южная Калифорния) солнечную электрогенерирующую систему “Solar Electric Generating System I” (или SEGS I) мощностью 13,8 МВт. В приемных трубках масло нагревалось до температуры 343 C и вырабатывался пар для производства электричества. Конструкция “SEGS I” предусматривала 6 часов аккумулирования тепла. В ней применялись печи на природном газе, которые использовались в случае отсутствия солнечной радиации. Эта же компания построила аналогичные электростанции “SEGS II - VII” мощностью по 30 МВт. В 1990 г. в Харпер Лейк были построены “SEGS VIII и IX”, каждая мощностью 80 МВт.

 

 

Рисунок 5 - Солнечный параболический концентратор

Оценки технологии показывают ее более высокую стоимость, чем у солнечных электростанций башенного и тарельчатого типа (см. ниже), в основном, из-за более низкой концентрации солнечного излучения, а  значит, более низких температур и, соответственно, эффективности. Однако, при условии накопления опыта эксплуатации, улучшения технологии и снижения эксплуатационных расходов параболические концентраторы могут быть наименее дорогостоящей и самой надежной технологией ближайшего будущего.

 

 

3.2 Солнечная установка тарельчатого типа

 

 

Этот вид  гелиоустановки представляет собой  батарею параболических тарелочных зеркал (схожих формой со спутниковой  тарелкой), которые фокусируют солнечную  энергию на приемники, расположенные  в фокусной точке каждой тарелки. Жидкость в приемнике нагревается до 1000 градусов и непосредственно применяется для производства электричества в небольшом двигателе и генераторе, соединенном с приемником.

В настоящее  время в разработке находятся  двигатели Стирлинга и Брайтона. Несколько опытных систем мощностью от 7 до 25 кВт работают в Соединенных Штатах. Высокая оптическая эффективность и малые начальные затраты делают системы зеркал/двигателей наиболее эффективными из всех гелиотехнологий. Системе из двигателя Стирлинга и параболического зеркала принадлежит мировой рекорд по эффективности превращения солнечной энергии в электричество. В 1984 году на Ранчо Мираж в штате Калифорния удалось добиться практического КПД 29%.

 

 

Рисунок 6 - Солнечная установка тарельчатого типа

 

Двигатель стирлинга  устанавливается в фокус параболического  зеркала, таким образом, чтобы область  нагрева была постоянно освещена. Параболический отражатель управляется по двум координатам при слежении за солнцем. Энергия солнца фокусируется на небольшой площади. Зеркала отражают около 92 % падающего на них солнечного излучения. В качестве рабочего тела двигателя Стирлинга используется, как правило, водород, или гелий.

В феврале 2008 года Национальная лаборатория Sandia достигла эффективности 31,25 % в установке, состоящей из параболического концентратора и двигателя Стирлинга

Вдобавок к  этому, благодаря модульному проектированию, такие системы представляют собой  оптимальный вариант для удовлетворения потребности в электроэнергии как  для автономных потребителей (в киловаттном диапазоне), так и для гибридных (в мегаваттном), соединенных с электросетями коммунальных предприятий.

Эта технология успешно реализована в целом  ряде проектов. Один из них - проект STEP (Solar Total Energy Project) в американском штате  Джорджия. Это крупная система параболических зеркал, работавшая в 1982-1989 гг. в Шенандоа. Она состояла из 114 зеркал, каждое 7 метров в диаметре. Система производила пар высокого давления для выработки электричества, пар среднего давления для трикотажного производства, а также пар низкого давления для системы кондиционирования воздуха на той же трикотажной фабрике.

Совместным  использованием параболических зеркал и двигателей Стирлинга заинтересовались и другие компании. Так, фирмы “Stirling Technology”, “Stirling Thermal Motors” и “Detroit Diesel” совместно с корпорацией “Science Applications International Corporation” создали совместное предприятие с капиталом 36 млн долларов с целью разработки 25-киловаттной системы на базе двигателя Стирлинга.

 

 

3.3 Солнечные электростанции башенного типа с центральным приемником

 

 

В этих системах используется вращающееся поле отражателей-гелиостатов. Они фокусируют солнечный свет на центральный приемник, сооруженный  на верху башни, который поглощает  тепловую энергию и приводит в действие турбогенератор. Управляемая компьютером двуосная система слежения устанавливает гелиостаты так, чтобы отраженные солнечные лучи были неподвижны и всегда падали на приемник. Циркулирующая в приемнике жидкость переносит тепло к тепловому аккумулятору в виде пара. Пар вращает турбину для выработки электроэнергии, либо непосредственно используется в промышленных процессах. Температуры на приемнике достигают от 538 до 1482 C.

Первая башенная электростанция под названием “Solar One” близ Барстоу (Южная Калифорния) с успехом продемонстрировала применение этой технологии для производства электроэнергии. Предприятие работало в середине 1980-х. На нем использовалась водно-паровая система мощностью 10 МВтэ. В 1992 г. консорциум энергетических компаний США принял решение модернизировать “Solar One” для демонстрации приемника на расплавленных солях и теплоаккумулирующей системы. Благодаря аккумулированию тепла башенные электростанции стали уникальной гелиотехнологией, позволяющей диспетчеризацию электроэнергии при коэффициенте нагрузки до 65%. В такой системе расплавленная соль закачивается из “холодного” бака при температуре 288 C и проходит через приемник, где нагревается до 565 C, а затем возвращается в “горячий” бак. Теперь горячую соль по мере надобности можно использовать для выработки электричества. В современных моделях таких установок тепло хранится на протяжении 3 - 13 часов.

 

 

Рисунок 7 - Солнечные электростанции башенного типа с центральным приемником

 

 

“Solar Two” - башенная электростанция мощностью 10 МВт в Калифорнии - это прототип крупных промышленных электростанций. Она впервые дала электричество в апреле 1996 г., что явилось началом 3-летнего периода испытаний, оценки и опытной выработки электроэнергии для демонстрации технологии расплавленных солей. Солнечное тепло сохраняется в расплавленной соли при температуре 550 C, благодаря чему станция может вырабатывать электричество днем и ночью, в любую погоду. Успешное завершение проекта “Solar Two” должно способствовать строительству таких башен на промышленной основе в пределах мощности от 30 до 200 МВт.

 

 

3.4 Сопоставление технических характеристик

 

 

Башни и параболоцилиндрические концентраторы оптимально работают в составе крупных, соединенных  с сетью электростанций мощностью 30-200 МВт, тогда как системы тарельчатого типа состоят из модулей и могут использоваться как в автономных установках, так и группами общей мощностью в несколько мегаватт. Параболоцилиндрические установки - на сегодня наиболее развитая из солнечных энергетических технологий и именно они, вероятно, будут использоваться в ближайшей перспективе. Электростанции башенного типа, благодаря своей эффективной теплоаккумулирующей способности, также могут стать солнечными электростанциями недалекого будущего. Модульный характер “тарелок” позволяет использовать их в небольших установках. Башни и “тарелки” позволяют достичь более высоких значений КПД превращения солнечной энергии в электрическую при меньшей стоимости, чем у параболических концентраторов. Однако, остается неясным, смогут ли эти технологии достичь необходимого снижения капитальных затрат. Параболические концентраторы в настоящее время - уже апробированная технология, ожидающая своего шанса на совершенствование. Башенные электростанции нуждаются в демонстрации эффективности и эксплуатационной надежности технологии расплавленных солей при использовании недорогих гелиостатов. Для систем тарельчатого типа необходимо создание хотя бы одного коммерческого двигателя и разработка недорого концентратора.

 

4 Направления научных исследований в солнечной энергетики

 

 

4.1 Фундаментальные исследования

 

 

Из-за теоретических  ограничений в преобразовании спектра  в полезную энергию (около 30 %) для  фотоэлементов первого и второго  поколения требуется использование  больших площадей земли под электростанции. Например, для электростанции мощностью 1 ГВт это может быть несколько десятков квадратных километров (для сравнения, - гидроэнергетика, при таких же мощностях, выводит из пользования заметно большие участки земли), но строительство солнечных электростанций такой мощности может привести к изменению микроклимата в прилегающей местности и поэтому в основном устанавливаются фотоэлектрические станции мощностью 1 - 2 МВт недалеко от потребителя или даже индивидуальные и мобильные установки. Фотоэлектрические элементы на крупных солнечных электростанциях устанавливаются на высоте 1,8-2,5 метра, что позволяет использовать земли под электростанцией для сельскохозяйственных нужд, например, для выпаса скота. Проблема нахождения больших площадей земли под солнечные электростанции решается в случае применения солнечных аэростатных электростанций, пригодных как для наземного, так и для морского и для высотного базирования.

Поток солнечной  энергии, падающий на установленный  под оптимальным углом фотоэлемент, зависит от широты, сезона и климата и может различаться в два раза для заселённой части суши (до трёх с учётом пустыни Сахары). Атмосферные явления (облака, туман, пыль и др.) не только изменяют спектр и интенсивность падающего на поверхность Земли солнечного излучения, но и изменяют соотношение между прямым и рассеянным излучениями, что оказывает значительное влияние на некоторые типы солнечных электростанций, например, с концентраторами или на элементах широкого спектра преобразования.

 

 

4.2 Прикладные исследования

 

 

Фотоэлектрические преобразователи работают днём и  с меньшей эффективностью работают в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме  того, производимая ими электроэнергия может резко и неожиданно колебаться из-за смены погоды. Для преодоления этих недостатков на солнечных электростанциях используются эффективные электрические аккумуляторы (на сегодняшний день это не достаточно решённая проблема), либо преобразуют в другие виды энергии, например, строят гидроаккумулирующие станции, которые занимают большую территорию, или концепцию водородной энергетики, которая на сегодняшний день пока недостаточно экономически эффективна. На сегодняшний день эта проблема просто решается созданием единых энергетических систем, которые перераспределяют вырабатываемую и потребляемую мощность. Проблема некоторой зависимости мощности солнечной электростанции от времени суток и погодных условий решается также с помощью солнечных аэростатных электростанций.

На сегодняшний день сравнительно высокая цена солнечных фотоэлементов. С развитием технологии и ростом цен на ископаемые энергоносители этот недостаток преодолевается. В 1990-2005 гг. цены на фотоэлементы снижались в среднем на 4 % в год.

Поверхность фотопанелей и зеркал (для тепломашинных ЭС) нужно очищать от пыли и других загрязнений. В случае крупных фотоэлектрических станций, при их площади в несколько квадратных километров это может вызвать затруднения.

Эффективность фотоэлектрических элементов падает при их нагреве (в основном это касается систем с концентраторами), поэтому возникает необходимость в установке систем охлаждения, обычно водяных. Также в фотоэлектрических преобразователях третьего и четвёртого поколений используют для охлаждения преобразование теплового излучения в излучение наиболее согласованное с поглощающим материалом фотоэлектрического элемента (так называемое up-conversion), что одновременно повышает КПД.

Через 30 лет  эксплуатации эффективность фотоэлектрических  элементов начинает снижаться. Отработавшие своё фотоэлементы, хотя и незначительная их часть, в основном специального назначения, содержат компонент (кадмий), который недопустимо выбрасывать на свалку. Нужно дополнительное расширение индустрии по их утилизации.

 

 

4.3 Экологические проблемы

 

 

При производстве фотоэлементов уровень загрязнений  не превышает допустимого уровня для предприятий микроэлектронной промышленности. Современные фотоэлементы имеют срок службы (30-50 лет). Применение кадмия, связанного в соединениях, при  производстве некоторых типов фотоэлементов, с целью повышения эффективности преобразования, ставит сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения, хотя такие элементы имеют незначительное распространение и соединениям кадмия при современном производстве уже найдена достойная замена.

В последнее  время активно развивается производство тонкоплёночных фотоэлементов, в составе  которых содержится всего около 1 % кремния, по отношению к массе  подложки на которую наносятся тонкие плёнки. Из-за малого расхода материалов на поглощающий слой, здесь кремния, тонкоплёночные кремниевые фотоэлементы дешевле в производстве, но пока имеют меньшую эффективность и неустранимую деградацию характеристик во времени. Кроме того, развивается производство тонкоплёночных фотоэлементов на других полупроводниковых материалах, в частности CIS и CIGS, достойных конкурентов кремнию. Так, например, в 2005 г. компания "Shell" приняла решение сконцентрироваться на производстве тонкоплёночных элементов, и продала свой бизнес по производству монокристаллических (нетонкоплёночных) кремниевых фотоэлектрических элементов.

 

4.4 Солнечная энергетика сегодня: достижения и перспективы

 

 

Отвечая на вопрос заинтересованности ученых и государственных структур в солнечной энергии в наше время, можно с уверенностью сказать, что сейчас мы переживаем бум развития этой отрасли. Инженеры не перестают радовать потребителей новыми достижениями в этой сфере, делая энергию солнца доступнее, безопаснее и проще.

Совсем недавно американские ученые выступили с громким заявлением в ближайшее время заменить арабскую нефть солнечной энергией Калифорнии. Нужно сказать, что тенденция роста цен на ископаемое топливо стимулирует и в некоторой степени оправдывает высокие затраты частных и государственных инвесторов на развитие и внедрение «солнечных» технологий. К примеру, фонды Khosla Ventures и Kleiner, Perkins, Caufield & Byers в этом месяце выделили американской компании Ausra, специализирующейся на изготовлении преобразователей солнечной энергии, 40 миллионов долларов на развитие отрасли.

Информация о работе Солнечные электростанции