Автор работы: Пользователь скрыл имя, 15 Июня 2013 в 21:29, реферат
Обычно мы используем имеющиеся в нашем распоряжении источники энергии тремя путями. Во-первых, мы можем получать тепловую энергию, сжигая ископаемое топливо, и использовать эту энергию непосредственно для обогревания жилищ, школ, предприятии и торговых учреждении. Во-вторых, можно преобразовать заключенную в топливе тепловую энергию в работу, например использовать продукты перегонки нефти для приведения в движение различного оборудования, а также автомобилей, тракторов, поездов, самолетов и кораблей. Наконец в-третьих, возможно преобразовать тепловую энергию, высвобождающуюся при сгорании топлива или выделяющуюся при делении ядер урана, в электрическую, а потом направить полученную электрическую энергию либо для производства тепла, либо для выполнения механической работы.
Введение 3
Энергия солнца 5
Энергия ветра 8
Энергия воды 10
Геотермальная энергия 13
Энергия биомассы 15
Вторичные энергоресурсы 17
Атомная энергия 18
Производство, распрастранение и потребление электрической энергии 21
Заключение 28
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
НАЦИОНАЛЬНЫЙ
ИССЛЕДОВАТЕЛЬСКИЙ
ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
ИНСТИТУТ КИБЕРНЕТИКИ
реферат
«Способы преобразования различных видов энергии в электрическую:
современное состояние и перспективы развития»
Выполнил: студент группы 5А11
Ф.И.О. Палванов Р.Б.
Руководитель:
Томск 2013
Содержание
Введение 3
Энергия солнца 5
Энергия ветра 8
Энергия воды 10
Геотермальная энергия 13
Энергия биомассы 15
Вторичные энергоресурсы 17
Атомная энергия 18
Производство, распрастранение и потребление электрической энергии 21
Заключение 28
Обычно мы используем имеющиеся в нашем распоряжении источники энергии тремя путями. Во-первых, мы можем получать тепловую энергию, сжигая ископаемое топливо, и использовать эту энергию непосредственно для обогревания жилищ, школ, предприятии и торговых учреждении. Во-вторых, можно преобразовать заключенную в топливе тепловую энергию в работу, например использовать продукты перегонки нефти для приведения в движение различного оборудования, а также автомобилей, тракторов, поездов, самолетов и кораблей. Наконец в-третьих, возможно преобразовать тепловую энергию, высвобождающуюся при сгорании топлива или выделяющуюся при делении ядер урана, в электрическую, а потом направить полученную электрическую энергию либо для производства тепла, либо для выполнения механической работы.
Преобразование различных форм
энергии в электрическую
Современное общество зависит от электроэнергии, являющейся главным видом доступной энергии, а большая часть электроэнергии производится с использованием не возобновляемых ресурсов. Электричество используется в быту и на производстве для освещения и отопления, а также в технологических процессах. Во многих развитых странах потребность в электроэнергии удваивается каждые десять лет и хотя отмечается некоторое снижение, но в быту и промышленности расходование ее растет.
Энергетические ресурсы — это любые источники механической, химической и физической энергии. Их можно классифицировать по источникам и местоположению, скорости исчерпания, возможности самовосстановления и другим признакам.
Классификация энергетических ресурсов
Первичные |
Вторичные |
Невозобновляемые (уголь, нефть, сланцы, природный газ, горючее) |
Промежуточные продукты обогащения и сортировки углей; гудроны, мазуты и другие остаточные продукты переработки нефти; щепки, пни, сучья при заготовке древесины; горючие газы (доменный, коксовый); тепло уходящих газов; горячая вода из систем охлаждения; отработанный пар силовых промышленных установок |
Возобновляемые (древесиа, гидроэнергия, энергия ветра, энергия солнца, геотермальная энергия, торф, термоядерная энергия) |
Большая часть ресурсов твердых
органических топлив и урана расположена
на территории промышленно развитых
стран, тогда как ресурсы нефти
и гидроэнергии сосредоточены в
развивающихся странах Азии, Африки
и Латинской Америки. Большая
часть извлекаемых запасов
Запасы топлива в недрах складываются из угля, нефти, газа и урановых руд. Мировой запас угля оценивается в 9-11 трлн. т (условного топлива) при добыче более 4,2 млрд. т/год.
Получение электричества за счет сжигания
ископаемого топлива
Общество стоит перед
Мировая энергетическая система, основанная
на высокоэффективном
Эффективный солнечный водонагреватель
был изобретен в 1909 г. После второй
мировой воины рынок захватили
газовые и электрические
Солнце — источник энергии очень большой мощности. 22 дня солнечного сияния по суммарной мощности, приходящей на Землю, равны всем запасам органического топлива на Земле. Проблема в том, как использовать солнечную энергию в производственных и бытовых целях.
На практике солнечная радиация может быть преобразована в электроэнергию непосредственно или косвенно.
Косвенное преобразование может быть осуществлено путем концентрации радиации с помощью следящих зеркал для превращения воды в пар и последующего использования пара для генерирования электричества обычными способами. Такая система может работать только при прямом освещении солнечными лучами. Из этого следует, что производство энергии будет периодическим и что воспринимающая поверхность, предназначенная для получения заданного количества энергии, должна изменяться в зависимости от интенсивности и продолжительности инсоляции рассматриваемой поверхности. Подсчитано, что для жарких сухих районов, таких, как Западная Америка, Северная Америка или Центральная Австралия, электростанция для производства 1 тыс. МВт при ожидаемой эффективности преобразования потребует суммарной площади коллекторов, равной 13-25 км2. Это больше, чем площадь, занимаемая обыкновенной электростанцией, но меньше, чем площадь, занимаемая станцией и открытым карьером для добычи потребляемого ею угля.
Прямое преобразование солнечной энергии в электрическую может быть осуществлено с использованием фотоэлектрического эффекта. Элементы, изготовленные из специального полупроводникового материала, например силикона, при прямом солнечном облучении обнаруживают разность в вольтаже на поверхности, т. е. наличие электрического тока. Преимущество этой системы — в равной эффективности независимо от того, используется ли она в малых элементах — для электроснабжения камеры или в крупных комплексах — для больших зданий. В то же время они дороги, малоэффективны и нуждаются в системе аккумуляторов (обычно батарей) для обеспечения непрерывного энергоснабжения ночью и в пасмурные дни.
Предложен метод использования
солнечной энергии без
Американские эксперты считают многообещающей солнечную термоэнергию, для производства которой используются солнечные рефлекторы, собирающие и концентрирующие тепло и свет, при посредстве которых нагревается вода. Например в России, на Ковровском механическом заводе (г. Жуковск) выпускают солнечные тепловые коллекторы для подогрева воды производительностью до 100 тыс. м3 в год.
Стоимость солнечных батарей быстро уменьшается (в 1970г. 1 кВт-ч электроэнергии, вырабатываемой с их помощью стоил 60 долл., в 1980 г - 1 долл., сейчас — 20-30 центов). Благодаря этому спрос на солнечные батареи растет на 25 % в год, ежегодный объем их продажи превышает (по мощности) 40 МВт. КПД солнечных батарей достигавший в середине 70-х годов в лабораторных условиях 18% составляет в настоящее время 28,5 % для элементов из кристаллического кремния и 35 % - из двухслойных пластин из арсенида галлия и антимода галлия. Разработаны многообещающие элементы из тонкопленочных (толщиной 1-2 мкм) полупроводниковых материалов: хотя их КПД низок (не выше 16 % даже в лабораторных условиях), стоимость очень мала (не более 10% от стоимости современных солнечных батарей).
Фотоэнергетика весьма перспективна для сельских районов развивающихся стран, так фотоэлектрическая установка, если учитывать весь ее жизненный цикл, более выгодна, чем дизель-генератор мощностью до 20 кВт. В Индии, где действуют 4-5 млн дизельных водяных насосов средней мощностью 3,5 кВт каждый, объем продажи фотоэлектроустановок для их замены может достичь 1 тыс. МВт — в 25 раз больше их нынешнего мирового сбыта.
Солнечная энергия может быть использована для теплоснабжения (горячего водоснабжения, отопления), сушки различных продуктов и материалов, в сельском хозяйстве, в технологических процессах в промышленности.
Солнечное теплоснабжение получило развитие
во многих зарубежных странах. Большинство
установок солнечного теплоснабжения
оборудовано солнечным
Представляется, что прямое преобразование
солнечной энергии станет краеугольным
камнем энергетической системы. Хотя в
настоящее время
Энергия солнца, как полагают эксперты,
— квинтэссенция энергетики, поскольку
фотоэлектрические установки не
оказывают воздействия на природную
среду, бесшумны, не имеют движущихся
частей, требуют минимального обслуживания,
не нуждаются в воде. Их можно монтировать
в отдаленных или засушливых районах,
мощность таких установок составляет
от нескольких ватт (портативные модули
для средств связи и измерительных приборов
до многих мегаватт (площадь несколько
миллионов квадратных метров).
Энергия ветра - это косвенная форма солнечной энергии, являющаяся следствием разности температур в атмосфере земли. В 80-е гг. стоимость 1 кВт*ч ветровой энергии была снижена на 70% и теперь составляет 6 - 8 центов, что делает ее конкурентоспособной по отношению к энергии, получаемой на новых тепловых электростанциях, сжигающих уголь. Специалисты уверены, что ветряные турбины скоро будут усовершенствованы и станут эффективными. Так, Соединенные Штаты Америки к 2030 г. смогут получать 10 - 20% электроэнергии за счет данного источника.
Ветроэнергия при скоростях более 5 м/сек используется для выработки электроэнергии.
В России осваивается производство ветроэнергетических систем, состоящих из 10—15 установок мощностью до 1—2 МВт. Общие запасы ветроэнергии на территории России огромны, но пока из-за низкого КПД (0,25-0,7) и большой металлоемкости (до 500 кг/кВт) ветроустановки неконкурентоспособны с традиционными источниками.
Национальные программы
Преобразование энергии ветра в электричество составило в 80-е годы в мировом масштабе 1660 МВт, причем 85 % этой энергии было произведено в штате Калифорния, США. В частности, в районе калифорнийского города Алтамаунт-Пасс на принадлежащем фирме «Pasific Gas and Electric» комплексе действует 7500 ветроустановок, причем стоимость вырабатываемой ими электроэнергии составляет 7 центов/кВт-ч (на современных ТЭС она составляет 5 центов/кВт-ч). При этом в установках Алтамаунт-Пасс применяются конструктивные и технологические решения большой давности, исключая использование композиционных материалов при производстве лопастей ветроагрегатов и микропроцессоров для контроля за работой генераторов. Их высокая эффективность была достигнута благодаря быстрому внедрению решений, неожиданно возникавших в процессе строительства и эксплуатации и продиктованных практической целесообразностью, что совершенно невозможно применить к крупным ТЭС и АЭС.
Что же касается более передовых достижений в ветроэнергетике, то в институте EPRI и на фирме «WindPower» (Ливермор, штат Калифорния) создали прототип ветровой энерготурбины переменной частоты вращения мощностью 300 кВт. Конструкция лопастей и внедрение электронной системы управления обеспечивают вращение ротора с оптимальной частотой в широком диапазоне скоростей ветра. Кроме того, установка отличается пониженным накоплением усталостных напряжений в материалах и невысокой стоимостью эксплуатации. Дальнейшее совершенствование аэродинамических и электронных компонентов ветроэнергоустановок, как полагают в Министерстве энергетики США, позволит в ближайшие 20 лет уменьшить стоимость вырабатываемой ими электроэнергии до 3,5 центов/кВт-ч с умеренными ветровыми ресурсами. С экономической точки зрения наиболее выгодно подключать ветроустановки к энергосистемам в периоды пиковых нагрузок (в Алтамаунт-Пасс и Солано, штат Калифорния на их долю приходится 50 % энергии пиковых нагрузок).