Автор работы: Пользователь скрыл имя, 15 Апреля 2015 в 22:38, реферат
Радиоактивность — это способность атомов некоторых изотопов самопроизвольно распадаться, испуская излучение. Впервые такое излучение, испускаемое ураном, обнаружил Беккерель, поэтому вначале радиоактивные излучения называли лучами Беккереля. Основной вид радиоактивного распада — выбрасывание из ядра атома альфа-частицы — альфа-распад или бета-частицы — бета-распад
1. Цели и задачи...................................................................................................3
2. План проекта....................................................................................................3
3. Радиоктивность................................................................................................4
4. Строение атома...............................................................................................
5. Цепная ядерная реакция..................................................................................
6. Примененеие ядерной энергии........................................................................
7. Плюсы и минусы применения ядерной энергии...........................................
Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №2 с углубленным изучение отдельных предметов»
г.Новый Оскол, ул.Оскольская,7
Исследовательский проект на тему: «Строение атома и атомного ядра. Использование энергии атомных ядер»
г.Новый Оскол
2013г.
Введение:
Цели и задачи : Изучить строение атома и атомного ядра. Исследовать сферу использования энергии атомных ядер
План проекта:
Радиоактивность
Радиоактивность — это способность атомов некоторых изотопов самопроизвольно распадаться, испуская излучение. Впервые такое излучение, испускаемое ураном, обнаружил Беккерель, поэтому вначале радиоактивные излучения называли лучами Беккереля. Основной вид радиоактивного распада — выбрасывание из ядра атома альфа-частицы — альфа-распад или бета-частицы — бета-распад
При радиоактивном распаде исходный атом превращается в атом другого элемента. В результате выбрасывания из ядра атома альфа-частицы, представляющей собой совокупность двух протонов и двух нейтронов, массовое число образующегося атома (см.) уменьшается на четыре единицы, и он оказывается сдвинутым в таблице Д. И. Менделеева на две клетки влево, так как порядковый номер элемента в таблице равен числу протонов в ядре атома. При выбрасывании бета-частицы (электрон) происходит превращение в ядре одного нейтрона в протон, вследствие чего образующийся атом оказывается сдвинутым в таблице Д. И. Менделеева на одну клетку вправо. Масса его при этом почти не изменяется. Выбрасывание бета-частицы сопряжено обычно с гамма-излучением (см.).
Распад любого радиоактивного изотопа происходит по следующему закону: число распадающихся в единицу времени атомов (n) пропорционально числу атомов (N), имеющихся в наличии в данный момент времени, т. е. n=λN; коэффициент λ, называется постоянной радиоактивного распада и связан с периодом полураспада изотопа (Т) соотношением λ= 0,693/T.
Беккерель решил выяснить, может ли люминесцентный материал, активированный светом, а не катодными лучами, также испускать рентгеновские лучи. Он поместил на фотографические пластинки, завернутые в плотную черную бумагу, люминесцентный материал, имевшийся у него под рукой - сульфат уранил-калия (одна из солей урана),- и в течение нескольких часов подвергал этот пакет воздействию солнечного света. После этого он обнаружил, что излучение прошло сквозь бумагу и воздействовало на фотографическую пластинку, что, очевидно, указывало на то, что соль урана испускала рентгеновские лучи, а также и свет после того, как была облучена солнечным светом. Однако, к удивлению Беккерель , оказалось, что то же самое происходило и тогда, когда такой пакет помещали в темное место, без облучения солнечным светом. Беккерель , по-видимому, наблюдал результат воздействия не рентгеновских лучей, а нового вида проникающей радиации, испускаемой без внешнего облучения источника.
На протяжении нескольких последующих месяцев Беккерель повторял свой опыт с другими известными люминесцентными веществами и обнаружил, что одни лишь соединения урана испускают открытое им самопроизвольное излучение. Кроме того, нелюминесцентные соединения урана испускали аналогичное излучение, и, следовательно, оно не было связано с люминесценцией. В мае 1896 г. Беккерель провел опыты с чистым ураном и обнаружил, что фотографические пластинки показывали такую степень облучения, которая в три-четыре раза превышала излучение первоначально использовавшейся соли урана. Загадочное излучение, которое совершенно очевидно являлось присущим урану свойством, стало известно как лучи Беккереля.
В течение нескольких последующих лет благодаря исследованиям Беккереля и других ученых было, помимо прочего, обнаружено, что мощность излучения, по-видимому, не уменьшается со временем. В 1900 г. Беккерель пришел к выводу, что эти лучи частично состоят из электронов, открытых в 1897 г. Дж. Томсоном в качестве компонентов катодных лучей.
Ученица Беккереля, Мари Кюри открыла, что торий также испускает лучи Беккереля, и переименовала их в радиоактивность. Она и ее муж, Пьер Кюри, после тщательных исследований открыли два новых радиоактивных элемента - полоний (названный так в честь родины Мари Кюри - Польши) и радий.
Беккерель и супруги Кюри получили в 1903 г. Нобелевскую премию по физике.
Строение атома
Опыт Резерфорда
В 1911г. Резерфорд совместно со своими сотрудниками провел ряд опытов по исследованию состава и строения атомов.
Альфа-частицы испускались радиоактивным источником 1, помещённым внутри свинцового цилиндра 2 с узким каналом 3. Узкий пучок альфа-частиц из канала падал на фольгу 4 из исследуемого материала, перпендикулярно к поверхности фольги. Из свинцового цилиндра альфа-частицы проходили только через канал, а остальные поглощались свинцом. Прошедшие сквозь фольгу и рассеянные ею альфа-частицы попадали на полупрозрачный экран 5, который был покрыт люминесцирующим веществом (сульфатом цинка). Это вещество было способно светиться при ударе об него альфа-частицы. Столкновение каждой частицы с экраном сопровождалось вспышкой света. Эта вспышка называется сцинтилляция (от латинского scintillation – сверкание, кратковременная вспышка света). За экраном находился микроскоп 6. Чтобы не происходило дополнительного рассеяния альфа-частиц в воздухе, весь прибор размещался в сосуде с достаточным вакуумом.
В отсутствие фольги на экране возникал светлый кружок, состоящий из сцинтилляций, вызванных тонким пучком альфа-частиц. Но когда на пути движения альфа-частиц помещали тонкую золотую фольгу толщиной примерно 0,1 мк (микрон), то наблюдаемая на экране картинка сильно менялась: отдельные вспышки появлялись не только за пределами прежнего кружка, но их можно было даже наблюдать с противоположной стороны золотой фольги.
Подсчитывая число сцинтилляций в единицу времени в разных местах экрана, можно установить распределение в пространстве рассеянных альфа-частиц. Число альфа-частиц быстро убывает с увеличением угла рассеяния.
Наблюдаемая на экране картина позволила заключить, что большинство альфа-частиц проходит сквозь золотую фольгу без заметного изменения направления их движения. Однако некоторые частицы отклонялись на большие углы от первоначального направления альфа-частиц (порядка 135о…150о) и даже отбрасывались назад. Исследования показали, что при прохождении альфа-частиц сквозь фольгу примерно на каждые 10000 падающих частиц только одна отклоняется на угол более 10о от первоначального направления движения. Лишь в виде редкого исключения одна из огромного числа альфа-частиц отклоняется от своего первоначального направления.
Тот факт, что многие альфа-частицы проходили сквозь фольгу, не отклоняясь от своего направления движения, говорит о том, что атом не является сплошным образованием. Так как масса альфа-частицы почти в 8000 раз превосходит массу электрона, то электроны, входящие в состав атомов фольги, не могут заметно изменить траекторию альфа-частиц. Рассеяние альфа-частиц может вызывать положительно заряженная частица атома – атомное ядро.
Цепная ядерная реакция
Цепна́я я́дерная реа́кция — последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности.
Цепные реакции бывают управляемые и неуправляемые. Взрыв атомной бомбы является примером неуправляемой реакции. Ядерный заряд такой бомбы два или более кусков почти чистого или . Масса каждого куска меньше критической, поэтому цепная реакция не возникает. Поэтому чтобы произошел взрыв достаточно эти части соединить в один кусок, с массой больше чем критическая. Это нужно сделать очень быстро и соединение кусков должно быть очень плотным. В противном случае ядерный заряд разлетится на части, прежде чем успеет прореагировать. Для соединения используют обычное взрывчатое вещество. Оболочка служит отражателем нейтронов и, кроме того, удерживает ядерный заряд от распыления до тех пор, пока максимальное число ядер не выделит всю энергию при делении. Цепная реакция в атомной бомбе идет на быстрых нейтронах. При взрыве успевает прореагировать только часть нейтронов ядерного заряда. Цепная реакция приводит к выделению колоссальной энергии. Температура, развивающаяся при этом, достигает градусов. Разрушительная сила бомбы сброшенной на Хиросиму американцами, была эквивалентна взрыву 20000 тонн тринитротолуола. Образцу нового оружия по мощности в сотни раз превосходят первые. Если к этому добавить, что при атомном взрыве возникает огромное количество осколков деления, в том числе и весьма долгоживущих, то станет очевидным, какую ужасную опасность для человечества представляет это оружие.
Применение атомной энергии.
Применение ядерной энергии в современном мире оказывается настолько важным, что если бы мы завтра проснулись, а энергия ядерной реакции исчезла, мир, таким как мы его знаем, пожалуй, перестал бы существовать. Мирное использование источников ядерной энергии составляет основу промышленного производства и жизни таких стран, как Франция и Япония, Германия и Великобритания, США и Россия. И если две последние страны еще в состоянии заместить ядерные источники энергии на тепловые станции, то для Франции, или Японии это попросту невозможно.
Использование атомной энергии создает много проблем. В основном все эти проблемы связаны с тем, что используя себе на благо энергию связи атомного ядра (которую мы и называем ядерной энергией), человек получает существенное зло в виде высокорадиоактивных отходов, которые нельзя просто выбросить. Отходы от атомных источников энергии требуется перерабатывать, перевозить, захоранивать, и хранить продолжительное время в безопасных условиях.
Плюсы и минусы, польза и вред от использования ядерной энергии
Рассмотрим плюсы и минусы применения атомной-ядерной энергии, их пользу, вред и значение в жизни Человечества. Очевидно, что атомная энергия сегодня нужна лишь промышленно развитым странам. То есть, основное применение мирная ядерная энергия находит в основном, на таких объектах, как заводы, перерабатывающие предприятия, и т.п. Именно энергоемкие производства, удаленные от источников дешевой электроэнергии (вроде гидроэлектростанций) задействуют ядерные станции для обеспечения и развития своих внутренних процессов.
Аграрные регионы и города не слишком нуждаются в атомной энергии. Ее вполне можно заместить тепловыми и другими станциями. Получается, что овладение, получение, развитие, производство и использование ядерной энергии по большей части направлено на удовлетворение наших потребностей в промышленной продукции. Посмотрим, что это за производства: автомобильная промышленность, военные производства, металлургия, химическая промышленность, нефтегазовый комплекс, и т.д.
Современный человек хочет ездить на новой машине? Хочет одеваться в модную синтетику, кушать синтетику и упаковывать все в синтетику? Хочет ярких товаров разных форм и размеров? Хочет все новых телефонов, телевизоров, компьютеров? Хочет много покупать, часто менять оборудование вокруг себя? Хочет вкусно питаться химической едой из цветных упаковок? Хочет жить спокойно? Хочет слышать сладкие речи с телеэкрана? Хочет, чтобы танков было много, а также ракет и крейсеров, а еще снарядов и пушек?
Хочет?
И он все это получает. Неважно, что в конце расхождение между словом и делом приводит к войне. Неважно, что для его утилизации также нужна энергия. Пока что человек спокоен. Он ест, пьет, ходит на работу, продает и покупает.
А для всего этого нужна энергия. А еще для этого нужно очень много нефти, газа, металла и т.п. И все эти промышленные процессы нуждаются в атомной энергии. Поэтому кто бы что ни говорил, до тех пор, пока не будет запущен в серию первый промышленный реактор термоядерного синтеза, атомная энергетика будет только развиваться.
В плюсы ядерной энергии мы можем смело записать все то, к чему мы привыкли. К минусам – печальную перспективу скорой смерти в коллапсе исчерпания ресурсов, проблемах ядерных отходов, росте численности населения и деградации пахотных площадей. Иначе говоря, атомная энергетика позволила человеку еще сильнее начать овладевать природой, насилуя ее сверх меры настолько, что он за несколько десятилетий преодолел порог воспроизводства основных ресурсов, запустив между 2000 и 2010 годами процесс схлопывания потребления. Этот процесс объективно уже не зависит от человека.
Информация о работе Строение атома и атомного ядра. Использование энергии атомных ядер