Сверхпроводимость

Автор работы: Пользователь скрыл имя, 06 Апреля 2013 в 15:11, реферат

Описание работы

Сверхпроводимость - физическое явление, наблюдаемое у некоторых веществ (сверхпроводников), при охлаждении их ниже определенной критической температуры Tкр., и состоящее в обращении в нуль электрического сопротивления постоянному току и выталкивания магнитного поля из объема образца ( эффект Мейснера). Явление открыто в 1911 г. Х. Каммерлинг-Оннесом. Он провел экспериментальное исследование удельного сопротивления чистой ртути при низких температурах.

Содержание работы

Введение……………………………………………………….3 стр.

2.Теория сверхпроводимости……………………………………..4 стр.
3.Идеальный проводник и сверхпроводник. Эффект Мейснера………………..5 стр.
4. Эффекты Джозефсона……………………………………7 стр.

5.Сверхпроводники первого рода…………………………………………….8 стр.

6.Сверхпроводники второго рода……………………………………………9 стр.

7. Сферы применения сверхпроводимости…………………………………10 стр.

Файлы: 1 файл

Реферат на тему сврхпроводимость.doc

— 72.00 Кб (Скачать файл)

Оглавление

  1. Введение……………………………………………………….3 стр.

 

2.Теория сверхпроводимости……………………………………..4 стр.

3.Идеальный проводник и сверхпроводник. Эффект Мейснера………………..5 стр.

4. Эффекты Джозефсона……………………………………7 стр.

 

5.Сверхпроводники  первого рода…………………………………………….8 стр.

 

6.Сверхпроводники  второго рода……………………………………………9  стр.

 

7. Сферы применения сверхпроводимости…………………………………10 стр.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Сверхпроводимость - физическое явление, наблюдаемое у некоторых веществ (сверхпроводников), при охлаждении их ниже определенной критической температуры Tкр., и состоящее в обращении в нуль электрического сопротивления постоянному току и выталкивания магнитного поля из объема образца ( эффект Мейснера). Явление открыто в 1911 г. Х. Каммерлинг-Оннесом. Он провел экспериментальное исследование удельного сопротивления чистой ртути при низких температурах. Замкнутый проводник из твердой ртути помещался между полюсами электромагнита. При выключении тока в обмотке электромагнита в проводнике возникал индукционный ток, который при обычных условиях весьма быстро затухал. Однако при охлаждении ртути жидким гелием до температуры ниже 4,21 К сопротивление ртути резко уменьшалась и индукционный ток продолжал идти по проводнику в течении многих часов без сколько-нибудь заметного ослабления.

По уточненным данным, резкое падение сопротивления  ртути наступает при Т=4,15 К. Это явление получило название сверхпроводимости.  Явление сверхпроводимости было обнаружено ещё у 22 металлов (свинца, цинка, алюминия и др.). Известно также большое число сверхпроводящих сплавов (сплав висмута и золота, карбиды молибдена и вольфрама, нитрид ниобия и т.д.).                                                                                                                                                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ТЕОРИЯ  СВЕРХПРОВОДИМОСТИ.

Далее оказалось, что при крайне низких температурах целый ряд веществ обладает сопротивлением, по крайней мере, в 10-12 раз меньше, чем при комнатной температуре. Эксперименты показывают, что если создать ток в замкнутом контуре из сверхпроводников, то этот ток продолжает циркулировать и без источника ЭДС. Токи Фуко в сверхпроводниках сохраняются очень долгое время и не затухают из-за отсутствия тепла Джоуля (токи до 300А продолжают течь много часов подряд). Изучение прохождения тока через ряд различных проводников показало, что сопротивление контактов между сверхпроводниками также равно нулю. Отличительным свойством сверхпроводимости является отсутствие явления Холла. В то время, как в обычных проводниках под влиянием магнитного поля ток в металле смещается, в сверхпроводниках это явление отсутствует. Ток в сверхпроводнике как бы закреплен на своем месте.

Сверхпроводимость исчезает под действием следующих факторов:

1) повышение температуры; 

2) действие достаточно  сильного магнитного поля;

3) достаточно большая  плотность тока в образце; 

С повышением температуры  до некоторой Tс почти внезапно появляется заметное омическое сопротивление. Переход от сверхпроводимости к проводимости тем круче и заметнее, чем однороднее образец ( наиболее крутой переход наблюдается в монокристаллах).

Переход от сверхпроводящего состояния в нормальное можно  осуществить путем повышения  магнитного поля при температуре  ниже критической Tс. Минимальное поле Bс, в котором разрушается сверхпроводимость называется критическим магнитным полем. Зависимость критического поля от температуры описывается эмпирической формулой.

                                         Вс = B0 [ 1 - (T/Tс)2 ],

где В0 - критическое поле, экстраполированное к абсолютному нулю температуры.

Для некоторых веществ, по-видимому, имеет место зависимость от Т в первой степени. При действии магнитного поля на сверхпроводник наблюдается особого вида гистерезис, а именно если повышая магнитное поле уничтожить сверхпроводимость при H=Ht ( H - сила поля, Ht - повышенная сила поля: Ht = a (Tс2 - T2) ) , то с понижением интенсивности поля сверхпроводимость появится вновь при поле Htґ< Ht, dH = Ht - Htґ меняется от образца к образцу и обычно составляет 10% Ht. Повышение силы тока также приводит к исчезновению сверхпроводимости, то есть при этом понижается Tс. Чем ниже температура, тем выше та предельная сила тока it при которой сверхпроводимость уступает место обычной проводимости.

Сверхпроводимость наблюдается как у элементов, так и у сплавов и металлических соединений. Сверхпроводимость есть у Hg, Sn(белое), Pb, Tl, Tn, Ga, Ta, Th, Ti, Nb (иногда Cd).

Идеальный проводник и сверхпроводник. Эффект Мейснера.

Для анализа  поведения идеального проводника в магнитном поле рассмотрим контур, помещенный в поле с индукцией Ba (рис.2, а). Если площадь, ограниченая кольцом равна А, то поток, пронизывающий кольцо, можно описать по формуле

Ф=АdВa.

При изменении  приложенного поля в кольце, согласно закону Ленца, индуцируются токи. Они направлены так, что созданный ими внутри кольца поток стремится компенсировать изменение потока, вызванное переменной приложенного поля. Между индуцированным током и электродвижущей силой (-АdBа/dt) справедливо следующее соотношение:

-АdBа/dt=Ri+Ldi/dt,

где R и L - полное сопротивление и индуктивность  контура.

В обычном кольце наведенные токи из-за конечного сопротивления  быстро затухают и поток, пронизывающий  контур принимает новое значение. В случае идеальной проводимости R=0, последнее соотношение принимает вид

Li+ABа=const.

Таким образом, полный магнитный поток через  контур без сопротивления (Li+ABа) не может измениться. Даже при снижении внешнего поля до нуля, внутренний поток сохраняется благодаря циркулирующему в замкнутом кольце индуцированного незатухающего тока.

Все вышеизложенное относилось к условию, при котором  кольцо, находясь в приложенном магнитном  поле, охлаждалось ниже температуры  Тс, при которой исчезало сопротивление. Если же контур сначала охладить, а затем приложить внешне поле, то результирующий внутренний поток останется равным нулю, несмотря на наличие внешнего поля.

 

Рассмотрим  поведение идеального проводника в  магнитном поле. Предположим, что  образец из идеального проводника проходит следующие стадии: сначала охлаждается ниже некоторой температуры, когда падает сопротивление, а затем накладывается магнитное поле. Сопротивление по любому произвольно выбранному замкнутому контуру внутри металла равно нулю. Следовательно, величина магнитного потока, заключенного внутри этого кольца, остается равной нулю. Произвольность выбора контура позволяет заключить, что магнитный поток равен нулю по всему объему образца. Это связано с индуцированными магнитным полем незатухающими токами по поверхности образца. Они создают магнитный поток, плотность которого Вi повсюду внутри металла точно равна по величине и противоположна по плотности потока приложенного магнитного поля Вa. Таким образом, возникает ситуация, когда поверхностные токи, часто называемые экранирующими, препятствуют проникновению в образец магнитного потока приложенного поля. Если внутри вещества, находящегося во внешнем поле, магнитный поток равен нулю, то говорят, что он проявляет идеальный диамагнетизм. При снижении плотности приложенного поля до нуля образец остается в своем ненамагниченном состоянии.

В другом случае, когда магнитное поле приложено к образцу, находящемуся выше переходной температуры, конечная картина заметно изменится. Для большинства металлов (кроме ферромагнетиков) значение относительной магнитной проницаемости близко к единице. Поэтому плотность магнитного потока внутри образца практически равна плотности потока приложенного поля. Исчезновение электросопротивления после охлаждения не оказывает влияния на намагниченность, и распределение магнитного потока не меняется. Если теперь снизить приложенное поле до нуля, то плотность магнитного потока внутри сверхпроводника не может меняться, на поверхности образца возникают незатухающие токи, поддерживающие внутри магнитный поток. В результате образец остается все время намагниченным. Таким образом, намагниченность идеального проводника зависит от последовательности изменения внешних условий.

В течение почти  четверти века считали, что единственным характеристическим свойством сверхпроводящего состояния является отсутствие электрического сопротивления. Это означает, что  сверхпроводник в магнитном поле будет вести себя так, как описано выше. Однако такой подход приводит к неоднозначному описанию сверхпроводящей фазы.

Эксперимент, иллюстрирующий переход из сверхпроводящего состояния  в обычное продемонстрировал, что  сверхпроводники - нечто большее, чем идеальные проводники. Они обладают дополнительным свойством, отсутствующим от металла, просто лишенного сопротивления: металл в сверхпроводящем состоянии никогда не позволяет магнитному потоку проникнуть внутрь, всегда Вi=0.

Когда сверхпроводник охлаждается в слабом магнитном поле, то при температуре перехода на его поверхности возникает незатухающий ток, циркуляция которого обращает внутренний магнитный поток в нуль. Это явление, заключающееся в том, что внутри сверхпроводника плотность магнитного потока всегда, даже во внешнем магнитном поле, равна нулю, называется эффектом Мейснера.

Эффект выталкивания магнитного поля из сверхпроводника  можно пояснить на основе представлений  о намагниченности. Если экранирующие токи, полностью компенсирующие внешнее магнитное поле, сообщают образцу магнитный момент m, то намагниченность M выражается соотношением

M=m/V,

где V - объем образца. Можно говорить о том, что экранирующие токи приводят к появлению намагниченности, соответствующей намагниченности идеального ферромагнетика с магнитной восприимчивостью, равной минус единице.

Эффекты Джозефсона. Если два сверхпроводника разделены между собой достаточно тонким слоем диэлектрика ( например, два металических слоя, разделенных окислом), то проникновение через барьер макроскопических волновых функций приводит к их перекрытию или к тунелированию электронных пар. Связанные с этим эффекты были количественно исследованы Брайаном Джозефсоном в 1962г.. Он показал, что если имеется разность фаз между этими двумя волновыми функциями, то ток может протекать в отсутствие какой-либо разности потенциалов.

Слой диэлектрика - не единственно возможный тип  “слабого звена”, среди других типов  можно отметить точечный контакт  двух хорошо пришлифованных сверхпроводников образованный путем травления сверхпроводящей пленки. На практике при нулевом напряжении через контакт можно пропустить ток только вплоть до некоторого порогового значения, выше которого появится напряжение. Это напряжение затем возрастает при росте тока. Такое явление называется стационарным эффектом Джозефсона. Нестационарный эффект Джозефсона возникает, когда к контакту прикладывается напряжение и через него начинает течь переменный ток.

Эффект Джозефсона может иметь много приложений, но он может быть и паразитным. Он возникает на границах зерен в поликристаллических образцах новых сверхпроводников и препятствует, например, попыткам измерения лондоновской глубины проникновения.

Сверхпроводники первого рода. Проанализируем протекание тока по проволоке круглого сечения, находящемся в сверхпроводящем состоянии. В отличии от экранирующего тока, возникающего при наложении магнитного поля, ток от внешнего источника будем называть транспортным. Если бы этот ток протекал внутри сверхпроводника, он создавал бы в его объеме магнитное поле, что противоречит эффекту Мейснера. Следовательно, ток, протекающий должен быть ограничен тонким слоем около поверхности, в который проникает магнитное поле. Толщина этого поверхностного слоя равна глубине проникновения .

Протекающий по сверхпроводнику транспортный ток будет создавать магнитное поле. Между плотностью тока и магнитным полем существует строгая связь, которая означает, что критическому полю соответствует определенная критическая плотность тока (правило Сильсби). Причем совершенно безразлично, о каком токе идет речь - транспортном, или экранирующем.

где R - радиус проволоки.

С помощью правила  Сильсби можно определить также  критические токи для сверхпроводников во внешнем магнитном поле. Для  этого необходимо сложить внешнее магнитное поле с полем транспортного тока на поверхности. Плотность тока достигает результирующее значение, когда это результирующее поле Врез становится критическим.

Процесс нарушения  сверхпроводимости в массивных  образцах при достижении критической силы тока происходит с образованием промежуточного состояния. Структура его для цилиндрического образца представлена на рис.5. При включении внешнего магнитного поля происходит его наложение на круговое поле тока, в результате чего геометрия межфазных границ между сверхпроводящими и нормальными областями значительно усложняется.

В конце разговора  о сверхпроводниках первого рода отметим, что низкие критические  параметры делают практически невозможным  их техническое использование.

Сверхпроводники второго рода. Принципиальное отличие сверхпроводника второго рода от сверхпроводника первого рода начинает проявляться в тот момент, когда магнитное поле на поверхности достигает значения Вc1 . При этом сверхпроводник переходит в смешанное состояние. Проникновение магнитного поля в объем сверхпроводника приводит к тому, что в этих условиях транспортный ток распределяется равномерно по всему сечению, не занятому вихревыми нитями. Таким образом, в отличие от сверхпроводников 1 рода, в которых ток протекает по тонкому поверхностному слою, в сверхпроводники 11 рода транспортный ток проникает во всем объеме.

Информация о работе Сверхпроводимость