Тепловое излучение тела животных

Автор работы: Пользователь скрыл имя, 02 Июня 2015 в 20:09, реферат

Описание работы

Тепловое излучение тела относится к инфракрасному диапазону электромагнитных волн. Впервые такое излучение было открыто английским астрономом Вильямом Гершелем. В 1865 английский физик Дж. Максвелл доказал, что ИК - излучение имеет электромагнитную природу и представляет собой волны длиной от 760нм до 1-2мм. Чаще всего весь диапазон ИК - излучения делят на области: ближнюю (750нм-2.500нм), среднюю (2.500нм - 50.000нм) и дальнюю (50.000нм-2.000.000нм).
Рассмотрим случай, когда тело А расположено в полости Б, которая ограничена идеальной отражающей (непроницаемой для излучения) оболочкой С (рис.1). В результате многократного отражения от внутренней поверхности оболочки излучение будет сохраняться в пределах зеркальной полости и частично поглощаться телом А. При таких условиях система полость Б - тело А не будет терять энергию, а будет лишь происходить непрерывный обмен энергией между телом А и излучением, которое заполняет полость Б.

Содержание работы

1. Понятие теплового излучения и его характеристики
3
2. Излучение реальных тел
7
3. Биологическое и терапевтическое действие тепла и холода
10
4. Способы передачи тепла
14
5. Физические основы термографии. Тепловизоры
17
Список использованной литературы
21

Файлы: 1 файл

физика.docx

— 1.16 Мб (Скачать файл)

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

«ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ

УНИВЕРСИТЕТ»

 

Факультет биотехнологии и ветеринарной медицины

 

Кафедра анатомии, физиологии и хирургии

 

 

 

 

РЕФЕРАТ

по дисциплине

«Физика»

на тему: «Тепловое излучение тела животных»

 

 

 

 

Работу выполнила: студентка группы 141-2

Специальность 111801.65 – Ветеринария

Квалификация – специалист

Морозова Ксения Олеговна                             ________________

Подпись

 

 

Руководитель  ___________   к.б.н., преподаватель Пискунова О.Г.

 

 

 

 

 

 

 

Орел 2015

 

Содержание

1. Понятие теплового излучения  и его характеристики

3

2. Излучение реальных  тел

7

3. Биологическое и терапевтическое  действие тепла и холода

10

4. Способы передачи тепла

14

5. Физические основы термографии. Тепловизоры

17

Список использованной литературы

21


 

 

1. Понятие теплового  излучения и его характеристики

 

Тепловое излучение - это электромагнитное излучение, которое возникает за счет энергии вращательного и колебательного движения атомов и молекул в составе вещества. Тепловое излучение характерно для всех тел, которые имеют температуру, превышающую температуру абсолютного нуля.

Тепловое излучение тела относится к инфракрасному диапазону электромагнитных волн. Впервые такое излучение было открыто английским астрономом Вильямом Гершелем. В 1865 английский физик Дж. Максвелл доказал, что ИК - излучение имеет электромагнитную природу и представляет собой волны длиной от 760нм до 1-2мм. Чаще всего весь диапазон ИК - излучения делят на области: ближнюю (750нм-2.500нм), среднюю (2.500нм - 50.000нм) и дальнюю (50.000нм-2.000.000нм).

Рассмотрим случай, когда тело А расположено в полости Б, которая ограничена идеальной отражающей (непроницаемой для излучения) оболочкой С (рис.1). В результате многократного отражения от внутренней поверхности оболочки излучение будет сохраняться в пределах зеркальной полости и частично поглощаться телом А. При таких условиях система полость Б - тело А не будет терять энергию, а будет лишь происходить непрерывный обмен энергией между телом А и излучением, которое заполняет полость Б.

 

Рис. 1 - Многократное отражение тепловых волн от зеркальных стенок полости Б

Если распределение энергии остается неизменным для каждой длины волны, то состояние такой системы будет равновесным, а излучение также будет равновесным. Единственным видом равновесного излучения является тепловое. Если по какой-то причине равновесие между излучением и телом сместится, то начинают протекать такие термодинамические процессы, которые вернут систему в состояние равновесия. Если тело А начинает излучать больше, чем поглощает, то тело начинает терять внутреннюю энергию и температура тела (как мера внутренней энергии) начнет падать, что уменьшит количество излучаемой энергии. Температура тела будет падать до тех пор, пока количество излучаемой энергии не станет равным количеству энергии, поглощаемой телом. Таким образом, наступит равновесное состояние.

Равновесное тепловое излучение имеет такие свойства: однородное (одинаковая плотность потока энергии во всех точках полости), изотропное (возможные направления распространения равновероятны), неполяризованное (направления и значения векторов напряженностей электрического и магнитного полей во всех точках полости изменяются хаотически).

Основными количественными характеристиками теплового излучения являются:

энергетическая светимость - это количество энергии электромагнитного излучения во всем диапазоне длин волн теплового излучения, которое излучается телом во всех направлениях с единицы площади поверхности за единицу времени: R = E/(S·t), [Дж/(м2с)] = [Вт/м2] Энергетическая светимость зависит от природы тела, температуры тела, состояния поверхности тела и длины волны излучения.

спектральная плотность энергетической светимости - энергетическая светимость тела для данных длин волн (λ + dλ) при данной температуре (T + dT): Rλ,T = f(λ, T).

Энергетическая светимость тела в пределах каких-то длин волн вычисляется интегрированием Rλ,T = f(λ, T) для T = const:

 

 

Рис. 2

 

коэффициент поглощения - отношение поглощенной телом энергии к падающей энергии. Так, если на тело падает излучение потока dФпад, то одна его часть отражается от поверхности тела - dФотр , другая часть проходит в тело и частично превращается в теплоту dФпогл, а третья часть после нескольких внутренних отражений - проходит через тело наружу dФпр : α = dФпогл/dФпад.

 

Рис. 3

 

Коэффициент поглощения α зависит от природы поглощающего тела, длины волны поглощаемого излучения, температуры и состояния поверхности тела:

монохроматический коэффициент поглощения - коэффициент поглощения теплового излучения данной длины волны при заданной температуре: αλ,T = f(λ,T)

Среди тел есть такие тела, которые могут поглощать все тепловое излучение любых длин волн, которое падает на них. Такие идеально поглощающие тела называются абсолютно черными телами. Для них α =1.

Есть также серые тела, для которых α<1, но одинаковый для всех длин волн инфракрасного диапазона.

 

Рис. 4

 

Моделью АЧТ является малое отверстие полости с теплонепроницаемой оболочкой. Диаметр отверстия составляет не более 0,1 диаметра полости. При постоянной температуре из отверстия излучается некоторая энергия, соответствующая энергетической светимости абсолютно черного тела. Но АЧТ - это идеализация. Но законы теплового излучения АЧТ помогают приблизиться к реальным закономерностям.

 

2. Излучение реальных  тел

 

Тепловое излучение с поверхности тела животного играет большую роль в теплоотдаче. Существуют такие способы теплоотдачи: теплопроводность (кондукция), конвекция, излучение, испарение. В зависимости от условий, в которых окажется животное, каждый из этих способов может иметь доминирующее значение (так, например, при очень высоких температурах среды ведущая роль принадлежит испарению, а в холодной воде - кондукции, причем температура воды 15 градусов является смертельной средой для теплокровных, и через 2-4 часа наступает обморок и смерть вследствие переохлаждения мозга). Доля излучения в общей теплоотдаче может составлять от 75 до 25%. В нормальных условиях около 50% при физиологическом покое.

 

 

Рис. 5

 

Тепловое излучение, которое играет роль в жизни живых организмов делится на коротковолновую (от 0,3 до 3 мкм) и длинноволновую (от 5 до 100мкм). Источником коротковолнового излучения служат Солнце и открытое пламя, а живые организмы являются исключительно реципиентами такого излучения. Длинноволновая радиация и излучается, и поглощается живыми организмами.

Величина коэффициента поглощения зависит от соотношения температур среды и тела, площади их взаимодействия, ориентации этих площадей, а для коротковолнового излучения - от цвета поверхности. Так у негров происходит отражение лишь 18% коротковолнового излучения, тогда как у людей белой расы около 40% (скорее всего, цвет кожи негров в эволюции не имел отношение к теплообмену). Для длинноволнового излучения коэффициент поглощения приближен к 1.

Расчет теплообмена излучением - очень трудная задача. Для реальных тел использовать закон Стефана-Больцмана нельзя, поскольку у них более сложная зависимость энергетической светимости от температуры. Оказывается, она зависит от температуры, природы тела, формы тела и состояния его поверхности. Со сменой температуры изменяется коэффициент σ и показатель степени температуры.

 

Рис. 6

 

Для серого тела мощность излучения во всем диапазоне определяется по формуле: P = αс.т.σ·T4·S Считая с определенными приближениями реальные тела близкими к серым телам, можно найти формулу для вычисления мощности излучения реальными телами при определенной температуре: P = α·σ·T4·S В условиях разных температур излучающего тела и окружающей среды: P = α·σ·(T14 - T24)·S

Существуют особенности спектральной плотности энергетической светимости реальных тел: при 310К, что соответствует средней температуре тела млекопитающего, максимум теплового излучения приходится на 9700нм. Любое изменение температуры тела приводит к изменению мощности теплового излучения с поверхности тела (0,1 градус достаточно). Поэтому исследование участков кожи, через ЦНС связанных с определенными органами, способствует выявлению заболеваний, в результате которых температура изменяется довольно значительно (термография зон Захарьина-Геда).

Интересен метод бесконтактного массажа биополем млекопитающего (Джуна Давиташвили). Мощность теплового излучения ладони 0,1Вт, а тепловая чувствительность кожи 0,0001 Вт/см2. Если действовать на вышеупомянутые зоны, можно рефлекторно стимулировать работу этих органов.

 

3. Биологическое  и терапевтическое действие тепла  и холода

 

Тело постоянно излучает и поглощает тепловое излучение. Этот процесс зависит от температур тела и окружающей среды. Максимум ИК-излучения тела приходится на 9300нм.

 

 

Рис. 7

 

При маленьких и средних дозах облучения ИК-лучами усиливаются метаболические процессы и ускоряются ферментативные реакции, процессы регенерации и репарации.

В результате действия ИК-лучей и видимого излучения в тканях образуются БАВ (брадикинин, калидин, гистамин, ацетилхолин, в основном вазомоторные вещества, которые играют роль в осуществлении и регуляции местного кровотока).

В результате действия ИК-лучей в коже активируются терморецепторы, информация от которых поступает в гипоталамус, в результате чего расширяются сосуды кожи, увеличивается объем циркулирующей в них крови, усиливается потовыделение.

Глубина проникновения ИК-лучей зависит от длины волны, влажности кожи, наполнения ее кровью степени пигментации и т.д.

На коже под действием ИК-лучей возникает красная эритема.

 

Рис. 8

 

Применяется в клинической практике для влияния на местную и общую гемодинамику, усиления потовыделения, расслабления мышц, снижения болевого ощущения, ускорения рассасывания гематом, инфильтратов и т.д.

В условиях гипертермии усиливается противоопухолевое действие лучевой терапии - терморадиотерапия.

Основные показания применения ИК-терапии: острые негнойные воспалительные процессы, ожоги и обморожения, хронические воспалительные процессы, язвы, контрактуры, спайки, травмы суставов, связок и мышц, миозиты, миалгии, невралгии. Основные противопоказания: опухоли, гнойные воспаления, кровотечения, недостаточность кровообращения.

Холод применяется для остановки кровотечений, обезболивания, лечения некоторых заболеваний кожи. Закаливание ведет к долголетию.

Под действием холода снижается частота сердечных сокращений, артериальное давление, угнетаются рефлекторные реакции.

В определенных дозах холод стимулирует заживление ожогов, гнойных ран, трофических язв, эрозий, коньюктивитов.

 

 

Рис. 9

 

Криобиология - изучает процессы, которые происходят в клетках, тканях, органах и организме под действием низких, нефизиологических температур.

В медицине используются криотерапия и гипертермия. Криотерапия включает методы, основанные на дозированном охлаждении тканей, органов. Криохирургия (часть криотерапии) использует локальное замораживание тканей с целью их удаления (часть миндалины. Если вся - криотонзилоэктомия. Можно удалять опухоли, например, кожи, шейки матки и т.д.) Криоэкстракция, основанная на криоадгезии (прилипании влажных тел к замороженному скальпелю) - выделение из органа части.

При гипертермии можно некоторое время сохранить функции органов ин виво. Гипотермию с помощью наркоза используют для сохранения функции органов при отсутствии кровоснабжения, поскольку замедляется обмен веществ в тканях. Ткани становятся стойкими к гипоксии. Применяют холодовой наркоз.

 

 

 

Рис. 10

 

Осуществляют действие тепла с помощью ламп накаливания (лампа Минина, солюкс, ванна светотепловая, лампа ИК-лучей) с использованием физических сред, имеющих высокую теплоемкость, плохую теплопроводность и хорошую теплосохранящую способность: грязи, парафин, озокерит, нафталин и т.д.

 

4. Способы передачи  тепла

 

Во-первых, передача тепла может происходить только от более нагретого тела менее нагретому. Ни какой холод ни куда передаваться не может - передается только тепло. Это второй закон термодинамики, который не нуждается в пояснениях и доказательствах.

 

Рис. 11

 

Во-вторых, передача тепла между предметами может происходит 3 способами:

Информация о работе Тепловое излучение тела животных