Автор работы: Пользователь скрыл имя, 14 Января 2013 в 06:42, реферат
Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д. Прекрасный миф о Прометее, даровавшем людям огонь, появился в Древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.
Введение. 2
Типы электрических станций. 2
Линии передач электроэнергии. 19
Список используемой литературы: 22
Содержание
Введение. 2
Типы электрических станций. 2
Линии передач электроэнергии. 19
Список используемой литературы: 22
Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д. Прекрасный миф о Прометее, даровавшем людям огонь, появился в Древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.
На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.
На сегодняшний день энергия остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать.
Типы электрических станций.
Электрическая станция - совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.
В зависимости
от источника энергии различают:
- тепловые электростанции (ТЭС), использующие
природное топливо;
- гидроэлектростанции (ГЭС), использующие
энергию падающей воды запруженных рек;
-
атомные электростанции (АЭС), использующие ядерную энергию;
- иные электростанции, использующие
ветровую, солнечную, геотермальную и
другие виды энергий.
В нашей стране производится и потребляется огромное количество электроэнергии. Она почти полностью вырабатывается тремя основными типами электростанций: тепловыми, атомными и гидроэлектростанциями.
В России около 75% энергии производится на тепловых электростанциях. ТЭС строят в районах добычи топлива или в районах потребления энергии. ГЭС выгодно строить на полноводных горных реках. Поэтому наиболее крупные ГЭС построены на сибирских реках. Енисее, Ангаре. Но также построены каскады ГЭС и на равнинных реках: Волге, Каме.
АЭС построены в районах, где потребляется много энергии, а других энергоресурсов не хватает (в западной части страны).
Основным типом электростанций в России являются тепловые (ТЭС). Эти установки вырабатывают примерно 67% электроэнергии России.
На их размещение влияют топливный и потребительский факторы. Наиболее мощные электростанции располагаются в местах добычи топлива. ТЭС, использующие калорийное, транспортабельное топливо, ориентированы на потребителей.
Принципиальная схема
тепловой электростанции представлена
на рис.1. Стоит иметь в виду, что
в ее конструкции может быть предусмотрено
несколько контуров - теплоноситель
от тепловыделяющего реактора может
не идти сразу на турбину, а отдать
свое тепло в теплообменнике теплоносителю
следующего контура, который уже
может поступать на турбину, а
может дальше передавать свою энергию
следующему контуру. Также в любой
электростанции предусмотрена система
охлаждения отработавшего теплоносителя,
чтобы довести температуру
Рис.1
ТЭС, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Среди ТЭС преобладают тепловые паротурбинные (ТПЭС), на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора (обычно синхронного генератора). В качестве топлива на таких ТЭС используют уголь (преимущественно), мазут, природный газ, лигнит, торф, сланцы.
ТПЭС, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. На ГРЭС вырабатывается около электроэнергии, производимой на ТЭС. ТПЭС, оснащенные теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называемым теплоэлектроцентралями (ТЭЦ); ими вырабатывается около электроэнергии, производимой на ТЭС.
ТЭС с приводом электрогенератора от газовой турбины называются газотурбинными электростанциями (ГТЭС). В камере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания с температурой 750-900 С поступают в газовую турбину, вращающую электрогенератор. Кпд таких ТЭС обычно составляет 26-28%, мощность - до нескольких сотен Мвт. ГТЭС обычно применяются для покрытия пиков электрической нагрузки.
ТЭС с парогазотурбинной установкой, состоящей из паротурбинного и газотурбинного агрегатов, называется парогазовой электростанцией (ПГЭС). кпд которой может достигать 42 - 43%. ГТЭС и ПГЭС также могут отпускать тепло внешним потребителям, то есть работать как ТЭЦ.
Тепловые электростанции используют широко распространенные топливные ресурсы, относительно свободно размещаются и способны вырабатывать электроэнергию без сезонных колебаний. Их строительство ведется быстро и связано с меньшими затратами труда и материальных средств. Но у ТЭС есть существенные недостатки. Они используют невозобновимые ресурсы, обладают низким КПД (30-35%), оказывают крайне негативное влияние на экологическую обстановку. ТЭС всего мира ежегодно выбрасывают в атмосферу 200-250 млн. т золы и около 60 млн. т сернистого ангидрида, а также поглощают огромное количество кислорода. Установлено, что уголь в микродозах почти всегда содержит U238, Th232 и радиоактивный изотоп углерода. Большинство ТЭС России не оснащены эффективными системами очистки уходящих газов от оксидов серы и азота. Хотя установки, работающие на природном газе экологически существенно чище угольных, сланцевых и мазутных, вред природе наносит прокладка газопроводов (особенно в северных районах).
Первостепенную роль среди тепловых установок играют конденсационные электростанции (КЭС). Они тяготеют и к источникам топлива, и к потребителям, и поэтому очень широко распространены.
Чем крупнее КЭС, тем дальше она может передавать электроэнергию, т.е. по мере увеличения мощности возрастает влияние топливно-энергетического фактора. Ориентация на топливные базы происходит при наличии ресурсов дешевого и нетранспортабельного топлива (бурые угли Канско-Ачинского бассейна) или в случае использования электростанциями торфа, сланцев и мазута (такие КЭС обычно связаны с центрами нефтепереработки).
ТЭЦ (теплоэлектроцентрали) представляют собой установки по комбинированному производству электроэнергии и теплоты. Их КПД доходит до 70% против 30-35% на КЭС. ТЭЦ привязаны к потребителям, т.к. радиус передачи теплоты (пара, горячей воды) составляет 15-20 км. Максимальная мощность ТЭЦ меньше, чем КЭС.
В
последнее время появились
принципиально новые
В России мощные (2 млн. кВт и более) построены в Центральном районе, в Поволжье, на Урале и в Восточной Сибири.
На базе Канско-Ачинского бассейна создается мощный топливно-энергетический комплекс (КАТЭК). В проекте предусмотрено строительство восьми ГРЭС мощностью по 6,4 млн. кВт. В 1989 г. был введен в строй первый агрегат Березовской ГРЭС-1 (0,8 млн. кВт).
Атомная электростанция (АЭС), электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор (см. Ядерный реактор). Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основном 233U, 235U. 239Pu). При делении 1 г изотопов урана или плутония высвобождается 22 500 квт ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относит увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.
Первая
в мире АЭС опытно-промышленного
назначения мощностью 5 Мвт была пущена
в СССР 27 июня 1954 г. в г. Обнинске.
До этого энергия атомного ядра использовалась
преимущественно в военных
Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяющееся в активной зоне реактора 1, отбирается водой (теплоносителем) 1-го контура, которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину 4.
Рис. 2.
Наиболее часто на АЭС применяются 4 типа реакторов на тепловых нейтронах: 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя; 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.
Выбор преимущественно
применяемого типа реактора определяется
главным образом накопленным
опытом в реакторостроении, а также
наличием необходимого промышленного
оборудования, сырьевых запасов и
т. д. На АЭС США наибольшее распространение
получили водо-водяные реакторы. Графито-газовые
реакторы применяются в Англии. В
атомной энергетике Канады преобладают
АЭС с тяжеловодными
В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой температурой собственно ядерного горючего, а также свойствами тенлоносителя, принятого для данного типа реактора.
На АЭС, тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур - пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.