Традиционные и возобновляемые источники электроэнергии

Автор работы: Пользователь скрыл имя, 12 Апреля 2013 в 07:44, реферат

Описание работы

На данном же этапе человечество обладает гораздо большими знаниями, однако и сейчас потребность в научной деятельности высока, ведь именно благодаря ей человечество может и дальше развиваться стабильно. Численность населения планеты на данном этапе развития растет, что приводит к поиску новых источников благ необходимых для привычного развития человечества. Одними из таких источников являются источники энергии, необходимые для полноценного развития сложившихся систем общественных отношений в мире.

Содержание работы

1. Вступление…………………………………………………………………………...
2. Электрическая энергия………………………………………………………………
3. Источники энергии…………………………………………………………………..
4. Происхождение природных источников энергии…………………………………
5. Происхождение каменного угля…………………………………………………….
6. Происхождение нефти и природного газа…………………………………………
7. Круговорот углерода, водорода и кислорода………………………………………
8. Запасы природных источников энергии…………………………………………..
9. Энергетические источники будущего………………………………………………
10. Солнце как важнейший источник энергии………………………………………..
11.Ядерные реакции - источник энергии Солнца…………………………………….
12. Аккумуляция солнечной энергии………………………………………………….
13. Происхождение энергии воды и ветра……………………………………………
14. Хорошо ли используется солнечная энергия……………………………………..
15. Энергия ветра……………………………………………………………………….
16. Энергия океанских течений………………………………………………………..
17. Заключение и вывод…………………………………………………………………
Список литературы………………………………………………………………………

Файлы: 1 файл

Традиционные и возобновляемые источники электроэнергии Эту сдать!!!!!!.doc

— 118.50 Кб (Скачать файл)

 

 

Происхождение каменного угля 

Уголь (каменный и бурый), употребляемый как горючее  или топливо, в большинстве случаев  залегает в земле (частично на глубине  многих сотен метров). Только некоторые  залежи бурого угля встречается на поверхности земли или непосредственно  вблизи поверхностных слоев. Добытый уголь, кроме углерода, содержит различное количество соединений (главным образом соединений углерода с кислородом и водородом, и в меньшем количестве - с азотом, серой и другими элементами). Основными химическими элементами, входящими в состав угля, являются углерод, кислород и водород.

Бурые и каменные угли в  большинстве своем имеют растительное происхождение и содержат в небольшом  количестве минеральные вещества. Они  образовались в теплом и сыром  климате в глубокой древности  из сильно разросшихся растений, когда они после гибели погружались на дно водоемов и поэтому не подвергались тлению и горению, при которых содержащийся в растениях углерод большей частью превращается в углекислый газ и другие летучие вещества. В процессах разложения этих растений (главным образом под воздействием микроорганизмов) из них высвобождаются соединения, богатые водородом и кислородом, а содержание углерода растет - образуется торф. Торф затем покрывается другими отложениями (песком, глиной) и в результате геологических, движений опускается в глубь земли, где под давлением и при высокой температуре процесс торфообразования переходит в процесс углеобразования (повышение содержания углерода). В ходе связанной с этим процессом миграции элементов содержание водорода и кислорода продолжает уменьшаться, а содержание углерода - расти; в результате из торфа получаются бурый уголь, каменный уголь и, наконец, антрацит. Бурые угли образуются в течение 40-60 миллионов лет  

Происхождение нефти и природного газа 

Нефть и природный газ состоят главным образом из углеводородов (соединений углерода и водорода), а также в небольшом количестве из других элементов (серы, азота, кислорода и т.д.). Нефть содержит 82-87 % углерода и 11-14 % водорода. По вопросу происхождения нефти существуют различные точки зрения. Наиболее признанной является теория, согласно которой газ и нефть состоят из органических веществ, главным образом животного происхождения (некоторые ученые полагают, что нефть и газ во многих случаях образовались в глубинах земли в результате действия воды на карбиды металлов). Живые организмы, погибшие и опустившиеся на морское дно, попадают в такие условия, где они не могут ни распадаться в результате окисления, ни уничтожаться микроорганизмами, а вследствие отсутствия контакта с воздухом образуют илистые осадки. В результате геологических движений эти осадки проникают на большие глубины. Там под влиянием давления и высокой температуры, а возможно, и под воздействием микроорганизмов в течение миллионов лет проходит процесс сухой возгонки, при котором содержащийся в осадках углерод в большей своей части переходит в углеводородные соединения, в то время как большая часть кислорода и других элементов мигрирует. Жидкая субстанция, состоящая главным образом из смеси различных по молекулярному весу углеводородов, может и самостоятельно мигрировать, проникая через поры и трещины земных недр. Основными составными частями природного газа являются низкомолекулярные углеводороды (прежде всего метан и этан), нефть же представляет собой высокомолекулярные углеводороды.

Названия каменный уголь, нефть, указывающие на их происхождение  из неживого материала (геологическое, а не биологическое), оправданы только отчасти. В действительности эти  продукты образовались из веществ, возникших  в результате жизнедеятельности животных и растений, и поэтому имеют биологическое происхождение. Однако те превращения, которые привели к образованию из животных и растительных организмов каменного угля, нефти и газа, в большинстве своем не носят биологического характера, а являются следствием геологических и геохимических условий (давление, температура и т.д.), создавшихся в окружающей неживой среде. Известны и другие минералы, которые представляют собой продукты превращений биологических веществ (например, мел).

Круговорот  углерода, водорода и кислорода 

Углерод, водород  и кислород совершают круговорот в природе: из энергетически бедных углеродных соединений в живых организмах под воздействием солнечной энергии  образуется энергетически более  богатые органические соединения, при этом освобождается кислород; затем в ходе длинного ряда сложных превращений при поглощении кислорода вновь образуется углекислый газ и вода и т.д.

Циклический характер химии живого мира, т.е. то обстоятельство, что при распаде снова образуются исходные продукты ("сырье"), чрезвычайно важен, так как в результате этого сырьевой баланс живых организмов никогда не может быть нарушен. Если бы, например? микробы не разлагали отмершие организмы, то жизнь на Земле не могла бы долго продолжаться, так как в этом случае имеющийся в нашем распоряжении запас углерода "за короткий срок" (с геологической точки зрения) осел бы в отмерших организмах. Не следует забывать, что изученная часть Земли (земная кора и воздух) содержит лишь 0,09% углерода.

В течение своего "нормального" круговорота углерод задерживается в живых организмах относительно короткое время (самое большое - несколько сотен лет). Уже здесь он может быть использован: древесина, и остальные части растений также являются энергоносителями, используемыми людьми с древнейших времен. С ростом потребности общества в энергии дерево уже не могло больше удовлетворить этой потребности, а стремительное уменьшение лесных массивов привело к настоятельной необходимости использовать вместо дерева другие источники энергии. В XIX столетии быстро возросло значение каменного угля как источника энергии. Уголь начали добывать уже с ХШ века, но до XIX века его в основном использовали лишь для отопления.

Запасы  природных источников энергии 

Углерод (как  энергоноситель) распределяется на Земле следующим образом: в атмосфере его содержится 640 млрд.т в виде углекислого газа, при этом около 150 млрд.т ежегодно потребляются растениями в процессе фотосинтеза; в растительных организмах запасено 500 млрд.т, а в животных - 5 млрд.т углерода. Большая часть углерода, содержащегося в живых организмах, после окисления снова поступает в атмосферу в виде углекислого газа. Углерод, не участвующий в окислительных процессах, накоплен в недрах земли в виде торфа (~1000 млрд.т), угля (~ 10000 млрд.т), нефти(~ 20 млрд.т).

Образование нефти, газа и угля - процесс, длившийся  много миллионов лет в специфических  условиях, которых нет в настоящее  время, поэтому в ближайшем будущем  нельзя рассчитывать на появление новых  месторождений.

Из запасов угля, составляющих около 10000 млрд. т, человечество на сегодняшний день использовало приблизительно 60-70 млрд.т. В настоящее время ежегодная потребность составляет больше 2 млрд.т. Это незначительный расход по сравнению с имеющимися запасами. Такое же положение и с нефтью. Кроме того, благодаря применению новейших методов геологоразведки открываются новые месторождения, однако все они не неисчерпаемы, и распоряжаться ими следует разумно. Нужно также учесть, что нефть, природный газ и уголь являются не только источниками энергии, но и важнейшим сырьем для химической промышленности. Из них получают исходные продукты для предприятия органической химии, они служат сырьем для производства искусственных удобрений и взрывчатых веществ, поскольку водород, необходимый для получения аммиака, основного исходного продукта этих отраслей промышленности, экономичнее всего получать из нефти или газа. Поэтому важнейшей задачей научных и прикладных исследований является разработка новых методов получения энергии, что позволит передать нефть и газ химической промышленности.

Итак, почти  во всех природных источниках энергии  в основном запасена энергия Солнца. Можно сказать, что в настоящее время каждая электростанция или двигатель питаются фактически ею. Исключением являются атомные электростанции, однако в общем производстве электроэнергии они пока играют ничтожную роль. Но и атомная энергия косвенным образом связана с солнечным излучением, так как образование урана, как и других химических элементов, связано с Солнцем, с возникновением Солнечной системы.

Энергетические  источники будущего 

Наряду с  тепловыми электростанциями, использующими  химическую энергию, источниками которой являются уголь, нефть и газ, начинает завоевывать признание атомная энергия, носителем которой в настоящее время практически прежде всего является уран. Первая атомная электростанция, давшая промышленный ток, была построена в 1954 г. в СССР, а в 1959 г. со стапелей был спущен атомоход "Ленин". С тех пор построено много более мощных атомных электростанций. Запасы урана достаточно велики, он дешев для транспортировки, отдаленность мест его добычи не имеет экономического значения, Если в будущем удастся осуществить управляемую термоядерную реакцию, т.е. синтез ядер гелия из водорода, то топливо (водород, получаемый из воды) для производства электроэнергии мы будем иметь практически в неограниченном количестве.

В настоящее  время электроэнергия в большинстве случаев получается с помощью механических устройств, отдельные части которых движутся со значительным трением. На электростанциях химическая энергия превращается в тепло путем окисления топлива, а атомная в ядерных реакторах - в результате ядерных превращений. Полученный при помощи этого тепла пар приводит в движение турбины генераторов тока. Это  в общем  не выгодно, и не только потому, что значительное количество энергии из-за трения частей машин превращается в тепло (при этом часть полезной мощности пропадает), но главным образом вследствие того,, что тепло, являющееся здесь промежуточным продуктом превращения энергии, может переходить в другие, нужные виды энергии лишь с очень низким коэффициентом полезного действия. Поэтому целесообразнее превращать энергию, заключенную в энергоносителях, в электрическую, минуя стадию тепла, поскольку электрическая энергий может быть принципиально полностью, а практически с хорошим КПД переведена в работу. Здесь открываются большие возможности, практическое осуществление которых - задача ближайшего будущего.

Одна из этих возможностей заключается в том, что в некоторых химических соединениях  под воздействием света может  возникать до некоторой степени  направленное движение электронов, т.е. начинает течь ток. Это так называемый фотоэлектрический эффект, который используется в фотоэлементах. Здесь можно говорить о превращении световой энергии в электрическую без выделения сколько-нибудь значительного количества тепла. Принципиально световое излучение Солнца можно таким образом превращать в электрическую энергию без потерь. На практике из-за технического несовершенства фотоэлементы работают пока с КПД, не превышающим 10-12 %, следовательно, превращают в электрическую энергию только 10-12 % падающего на них излучения. На пути широкого внедрения фотоэлементов в технику имеются и другие препятствия, однако в особых условиях (например, в приборах, установленных в отдаленных пунктах, на космических кораблях и т.д.) они незаменимы.

В гальванических элементах возможно почти полное превращение химической энергии в электрическую, минуя стадию тепла.

На обычных  электростанциях потери полезной работы возникают не только в связи с  тем, что при превращении энергии  она вначале переходит в тепло, но также из-за трения и износа твердых частей машины. Поэтому предпочтительнее такие машины, которые не имеют твердых движущихся частей. Теоретически, а в какой-то мере и практически такое устройство можно выполнить при помощи термоэлементов, состоящих из двух различных спаянных между собой металлов или полупроводников, где тепло непосредственно превращается в электрический ток.

Магнитогидродинамические  генераторы также не содержат твердых  движущихся частей, электрический ток  возникает здесь в сильно нагретом ионизированном газе, пропущенном через магнитное поле. Однако эти установки вследствие их технического несовершенства пока еще не могут обеспечить производство электроэнергии в широких масштабах.

 

 

Солнце  как важнейший источник энергии

 

 Поскольку энергия всех практически используемых энергоносителей происходит от Солнца, то естественно возникает вопрос о происхождении энергии самого Солнца.

Ранние представления  о происхождении солнечной энергии

Проблема происхождения  солнечного света занимала людей  еще с давних пор. В древности думали, что Солнце - это нечто, подобное мощному горящему факелу. Однако уже в первой половине XIX столетия было доказано, что в таком случае продолжительность существования Солнца не превышала бы 6000-8000 лет. Из геологических и палеонтологических исследований известно, что по крайней мере за последние 3-4 млрд.лет интенсивность солнечного излучения изменилась весьма незначительно. Примерно сто лет назад были попытки объяснить солнечную энергию постоянно падающими на Солнце метеоритами, кинетическая энергия которых превращается в тепло. Однако расчеты показывают, что это исключено хотя бы потому, что увеличение массы Солнца за счет метеоритов должно было бы привести к заметному увеличению солнечной гравитации. Предполагали также, что под действием собственной гравитации Солнце сжимается, и освобождающаяся при этом энергия превращается в тепло. Но это должно было бы привести к заметному уменьшению диаметра Солнца, и более того, как показывают подсчеты, оно бы уже остыло. Так что и эта теория оказалась несостоятельной.

Таким образом, классическая физика и химия не смогли ответить на вопрос о происхождении  энергии, излучаемой Солнцем в течение  миллиардов лет. Только современная  атомная физика показала, что источником солнечной энергии являются ядерные  превращения, происходящие в недрах Солнца.

 

Ядерные реакции - источник энергии Солнца

Революция в  физике, совершившаяся на рубеже XIX и XX веков в частности благодаря  открытию радиоактивности (Беккерель,1896), разработке квантовой теории (Планк,1900) и теории относительности (Эйн-штейн,1905), привела к открытию ядерных реакций, при которых освобождается в миллионы раз больше энергии, чем при химических. В ходе ядерных реакций (радиоактивного распада) атомные ядра (неделимые с точки зрения классической физики) одних радиоактивных элементов превращаются в атомные ядра других. В природе происходит естественный радиоактивный распад ряда химических элементов. В лабораторных условиях в настоящее время возможно искусственное превращение атомных ядер всех химических элементов. Эти процессы совершаются при бомбардировке атомных ядер различных элементов высокоэнергетическими ядерными частицами.

Информация о работе Традиционные и возобновляемые источники электроэнергии