Автор работы: Пользователь скрыл имя, 18 Января 2014 в 19:28, реферат
В зависимости от функций трансформаторы делят на силовые трансформаторы, трансформаторы тока и трансформаторы напряжения. Наиболее распространенный тип преобразователя - силовой трансформатор, является устройством, изменяющим напряжение переменного тока различных энергосистем для дальнейшей передачи конечному потребителю (питание электрооборудования, освещения, пр.). Силовые трансформаторы стали неотъемлемыми спутниками промышленных предприятий и линий электропередачи железных дорог, а также частью урбанистического пейзажа любого города.
В зависимости от функций трансформаторы делят на силовые трансформаторы, трансформаторы тока и трансформаторы напряжения. Наиболее распространенный тип преобразователя - силовой трансформатор, является устройством, изменяющим напряжение переменного тока различных энергосистем для дальнейшей передачи конечному потребителю (питание электрооборудования, освещения, пр.). Силовые трансформаторы стали неотъемлемыми спутниками промышленных предприятий и линий электропередачи железных дорог, а также частью урбанистического пейзажа любого города.
Использование силовых трансформаторов.
Генераторы электростанций вырабатывают энергию напряжением от 11 до 35 кВ. Столь высокий уровень напряжения непригоден для использования в промышленности или быту и обусловлен необходимостью экономной передачи электроэнергии на значительные расстояния. Однако даже 35 кВ – не всегда достаточная цифра для этой цели, поэтому, в дальнейшем, для увеличения напряжения линий электропередач используют повышающие силовые трансформаторы. На пути к потребителю, преобразование напряжения происходит обычно несколько раз. Приемники электроэнергии (бытовые приборы, лампы накаливания, промышленные станки) потребляют, значительно меньшее напряжение, что связано, с их конструктивными особенностями. Поэтому питание происходит посредством понижающего силового трансформатора. Устройство является понижающим, в случае более высокого первичного напряжения, при обратном соотношении трансформатор считают повышающим.
Силовые трансформаторы состоят из: магнитопровода, нескольких взаимоизолированных обмоток, клемм, обычно, в виде болтового соединения, систем охлаждения и стабилизации. Современные устройства этого типа оснащены также целым рядом систем так называемого навесного оборудования (индикаторы температуры, поглотители влаги, устройства защиты от перенапряжения и др.), их наличие и качество в значительной степени влияет на цену всего устройства. Преобразование электроэнергии в трансформаторе происходит за счет магнитного поля в магнитопроводе, который изготовляют из листового ферромагнитного материала. Потеря мощности от вихревых токов напрямую зависит от толщины металла и процента содержания в нем кремния.
Определяющими факторами классификации являются: номинальное напряжение, способ охлаждения (масляное или воздушное), а также число фаз и обмоток. Еще один внешний способ типологии силовых трансформаторов – это зависимость от способа установки (наружная установка, закрытая, комплексные распределительные устройства). В связи с этим, в названии устройства обычно присутствует буквенная аббревиатура, указывающая на его принадлежность к определенному типу. Наиболее часто используются следующие сокращения: количество фаз (О- однофазные, Т – трехфазные), система охлаждения (С- сухое,М- масляное), особенности конструкции ( Т – наличие трехуровневой обмотки Л – литая изоляция). Реже указывается назначение трансформатора, расщепление обмоток и др.
Магнитопровод с обмотками силового трансформатора
В трансформаторах с масляным охлаждением магнитопровод с обмотками помещают в бак с трансформаторным маслом (рис. 2.8). Омывая обмотки и магнитопровод, трансформаторное масло отбирает от них тепло и, обладая большей теплопроводностью, чем воздух, через стенки радиатора отдает ее в окружающую среду.
Существуют также сухие трансформаторы.
Вводы предназначены
для присоединения к сборным
шинам распределительных
Для компенсации
температурных изменений
Принцип действия трансформатора
основан на явлении электромагнитной
индукции. При подключении первичной
обмотки к источнику
233
где w1 и w2 – число витков в первичной и вторичной обмотках трансформатора.
При подключении нагрузки к выводам вторичной обмотки трансформатора под действием ЭДС е2 в цепи этой обмотки создается ток i2, а на выводах вторичной обмотки устанавливается напряжение u2.
Из (2.33) следует, что ЭДС е1 и е2 отличаются друг от друга числом витков обмоток, в которых они наводятся. Поэтому, применяя обмотки с требуемым соотношением витков, можно изготовить трансформатор на любое отношение напряжений.
Обмотку трансформатора, подключенную к сети с более высоким напряжением, называют обмоткой высшего напряжения (ВН); обмотку, присоединенную к сети меньшего напряжения, – обмоткой низшего напряжения (НH).
Трансформаторы обладают свойством обратимости; один и тот же трансформатор можно использовать в качестве повышающего и понижающего. Но обычно трансформатор имеет определенное назначение: либо он является повышающим, либо понижающим.
Трансформатор –
это аппарат переменного тока.
Если же его первичную обмотку
подключить к источнику постоянного
тока, то магнитный поток и
Трансформатором
называют статическое электромагнитное
устройство, имеющее две или большее
число индуктивно-связанных
1. Для передачи и распределения электрической энергии.
Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6-24 кВ, а передавать электроэнергию на дальние расстояния выгодно при значительно больших напряжениях (110, 220, 330, 400, 500, и 750 кВ). Поэтому на каждой электростанции устанавливают трансформаторы, осуществляющие повышение напряжения.
Распределение электрической энергии между промышленными предприятиями, населёнными пунктами, в городах и сельских местностях, а также внутри промышленных предприятий производится по воздушным и кабельным линиям, при напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно, во всех распределительных узлах должны быть установлены трансформаторы, понижающие напряжение до величины 220, 380 и 660 В (рис. 1.1)
2. Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на выходе и входе преобразователя. Трансформаторы, применяемые для этих целей, называются преобразовательными.
3. Для различных технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные трансформаторы) и др.
4. Для питания различных цепей радиоаппаратуры, электронной аппаратуры, устройств связи и автоматики, электробытовых приборов, для разделения электрических цепей различных элементов указанных устройств, для согласования напряжения и пр.
5. Для включения электроизмерительных приборов и некоторых аппаратов (реле и др.) в электрические цепи высокого напряжения или же в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопастности. Трансформаторы, применяемые для этих целей, называются измерительными.
Классификацию
трансформаторов можно
1. По назначению трансформаторы разделяют на силовые общего и специального применения. Силовые трансформаторы общего применения используются в линиях передачи и распределения электроэнергии. Для режима их работы характерна частота переменного тока 50 Гц и очень малые отклонения первичного и вторичного напряжений от номинальных значений. К трансформаторам специального назначения относятся силовые специальные (печные, выпрямительные, сварочные, радиотрансформаторы), измерительные и испытательные трансформаторы, трансформаторы для преобразования числа фаз, формы кривой ЭДС, частоты и т.д.
2. По виду охлаждения – с воздушным (сухие трансформаторы) и масляным (масляные трансформаторы) охлаждением.
3. По числу фаз на первичной стороне – однофазные и трёхфазные.
4. По форме магнитопровода – стержневые, броневые, тороидальные.
5. По числу обмоток на фазу – двухобмоточные, трёхобмоточные, многообмоточные (более трёх обмоток).
6. По конструкции обмоток – с концентрическими и чередующимися (дисковыми) обмотками.
Силовой трансформатор — трансформатор предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.
В промышленных сетях, где
наличие заземления нулевого
провода обязательно, этот
втотрансформаторы применяются в телефонных аппаратах, радиотехнических устройствах, для питания выпрямителей и т. д.
В СССР (и на постсоветском
пространстве) часть железных дорог электрифицирована на пер
Для малонаселённых территорий разработана система электрификации 2×25 кВ (два по двадцать пять киловольт).
На опорах контактной сети (сбоку от железнодорожного полотна и контактного провода) натянут специальный питающий провод, в который подаётся напряжение 50 тыс. вольт от тяговой подстанции. На железнодорожных станциях (или на перегонах) установлены малообслуживаемые понижающие автотрансформаторы, вывод обмотки подключён к питающему проводу, а вывод обмотки — к контактному проводу. Общим (обратным) проводом является рельс. На контактный провод подаётся половинное напряжение от 50 кВ, то есть 25 кВ.[2]
Данная система позволяет
реже строить тяговые подстанции, а также уменьшаются
тепловые потери. Электровозы и электроп
Схема автотрансформатора.
Предположим, что источник электрической энергии (сеть переменного тока) подключен к виткам обмоткиавтотрансформатора, а потребитель — к некоторой части этой обмотки .
При прохождении переменного тока по обмотке автотрансформатора возникает переменный магнитный поток,индуктирующий в этой обмотке электродвижущую силу, величина которой прямо пропорциональна числу витков обмотки.
Следовательно, если во всей обмотке автотрансформатора, имеющей число витков , индуктируется электродвижущая сила , то в части этой обмотки, имеющей число витков , индуктируется электродвижущая сила . Соотношение величин этих ЭДС выглядит так: , где — коэффициент трансформации.
Так как падение напряжения в актив
где — напряжение источника электрической энергии, поданное на всю обмотку автотрансформатора, имеющую число витков ;
— напряжение, подаваемое к потребителю
электрической энергии, снимаемое
с той части обмотки
Следовательно, .
Напряжение , приложенное со стороны источника электрической энергии ко всем виткам обмотки автотрансформатора, во столько раз больше напряжения , снимаемого с части обмотки, обладающей числом витков , во сколько раз число витков больше числа витков .
Если к автотрансформатору
подключен потребитель
Соответственно в первичной цепи автотрансформатора будет ток, действующее значение которого обозначим как .