Автор работы: Пользователь скрыл имя, 31 Января 2013 в 09:59, курсовая работа
Люди используют энергию ветра с незапамятных времен — достаточно вспомнить парусный флот, который был уже у древних финикян и живших одновременно с ними других народов, и ветряные мельницы. В принципе, преобразовать энергию ветра в электрический ток, казалось бы, нетрудно — для этого достаточно заменить мельничный жернов электрогенератором. Ветры дуют везде, они могут дуть и летом, и зимой, и днем, и ночью — в этом их существенное преимущество перед самим солнечным излучением. Поэтому вполне п9нятны многочисленные попытки "запрячь ветер в упряжку" и заставить его вырабатывать электрический ток.
ЭНЕРГИЯ ВЕТРА 3
ВЕТРОЭНЕРГЕТИКА ЗА РУБЕЖОМ 5
ВЕТРОЭНЕРГЕТИКА В РОССИИ 9
ФУНДАМЕНТАЛЬНЫЕ ЗНАНИЯ В ОБЛАСТИ ВЕТРОЭНЕРГЕТИКИ 10
МИНУСЫ ВЕТРОЭНЕРГЕТИКИ 10
ВЭС С ТОЧКИ ЗРЕНИЯ ЭКОЛОГИИ. 12
ЛИТЕРАТУРА 14
В 1990 г. новые возобновляемые источники энергии составили 164 Mtoe (1,9 % ) от общей потребляемой энергии. В 1994 г. во всем мире установленная мощность ветростанций составляла 3200 MW , 1400 MW приходилось на Европу. В таблице 6 приведены данные о по странам.
Страна, регион |
Установленная мощность ( MW) |
США Дания Германия Великобритания Нидерланды Испания Греция Швеция Италия Бельгия Португалия Ирландия Франция Остальные регионы Европы Индия Китай Остальные регионы Мира |
1700 520 320 145 132 55 35 12 10 7 2 7 1 35 100 25 75 |
Всего |
около 3200 |
Ежегодно в Европе установленная мощность ветроагрегатов составляет 200 MW При благоприятных условиях прирост установленной мощности может cоставить 800 MW. Наиболее эффективными по наращиванию установленной мощности ветростанций являются программы стран Европы , Китая, Индии , США, Канады.
Ежегодный оборот за счет продаж ветропреобразователей в странах Европы составляет 400 MECU. Более 10 крупнейших банков Европы инвестируют ветроэнергетическую индустрию. Более 20 крупных Европейских частных инвесторов финансируют ветроэнергетику. Стоимость ветровой энергии зависит в основном от следующих 6 параметров:
Параметры |
Ситуация 1 |
Ситуация 2 |
Ситуация 3 |
Среднегодовая скорость ветра на высоте 10м |
5.0-5.8 м/сек |
5.5-6.4 м/сек |
6.0-7.0 м/сек |
Количествоэлектро энергии вырабатываемой ветроагрегатом |
650 кВт ч/ |
825 кВт ч/ |
1140 кВт ч / |
стоимость электроэнергии |
0.046 ЕСU/кВтч |
0.036 ECU/кВтч |
0,026 ECU/кВтч |
За последние три десятилетия технология использования энергетических ресурсов ветра была сосредоточена на создании сетевых ветроагрегатов WECS. В этом направлении достигнуты значительные успехи. Многие тысячи современных установок WECS оказались полностью конкурентоспособными по отношению к обычным источникам энергии. Существующие электрические сети осуществляют транспортировку электроэнергии вырабатываемые ветропарками в различные регионы.
В последние годы интенсивно стали развиваться технологии использования энергии ветра в изолированных сетях. В изолированных сетях электропередач неизбежные затраты на единицу произведенной энергии во много раз выше , чем в централизованных сетях электропередач. Установки, производящие электроэнергию, обычно основаны на небольших двигателях внутреннего сгорания , использующих дорогостоящее топливо , когда расходы на транспортировку только топлива часто поднимают стоимость единицы произведенной энергии в десятки раз от стоимости энергии в лучших централизованных сетях электропередач. В небольших сетях электропередач установки, подающие электроэнергию, являются гораздо более гибкими: современный комплект генераторов на дизельном топливе можно запустить , синхронизировать и подключить к изолированной сети менее чем за две секунды. Преобразование энергии ветра является альтернативным возобновляемым источником энергии , чтобы заменить дорогостоящее топливо. Новые исследования технической осуществимости проектов использования ветроустановок совместно с дизельгенераторами в изолированных сетях показывают ,что мировой потенциал для независимых систем WECS даже выше, чему систем WECS, подключенных в обычные сети электропередач. В таблице 6 приведены параметры действующих ветро-дизельных систем. Указанные системы были построены в 1985-1990 г.г. Их эксплуатация выявила необходимость совершенствования систем, создания автоматизированного управления.
Таблица 6. Параметры
действующих ветро-дизельных
Страна |
Место расположения |
Мощность ветрогрегата, кВт |
Мощность дизельгенера- тора, кВт |
Мощность нагрузки, кВт |
Австралия |
Остров Роттнест |
20,50,55 |
1100 |
90-460 |
Бразилия |
Фернанд де Норонха |
2х5 |
50 |
200 макс. |
Канада |
Остров Келверт |
2х3 |
12 |
0,5-3,5 |
--#-- |
Кембридж Бэй |
4х25 |
4: 380-760 |
2375 макс |
--#-- |
Форт Северн |
60 |
85,125,195 |
50-150 |
Дания |
Ризо |
55 |
125 |
30-90 |
Франция |
место де Лас Турс |
10х12 |
152 |
100 макс |
Германия |
Хелоголенд |
12002 |
2-1200 |
1000-3000 |
--#-- |
Шнитлинген |
11 |
25 |
1-15 |
Греция |
Остров Китнос |
5х22 |
31.4 |
|
Ирландия |
Кейп Клиер |
2х30 |
60 |
15-100 |
--#-- |
Айнис Ойр |
1х63 |
1х12,1х26,1х44 |
--- |
Италия |
Келбриа |
20 |
2х20 |
--- |
Голландия |
ECN |
2х30 |
50 |
50 |
Норвегия |
Фроуа |
55 |
50 |
15-50 |
Испания |
Буджерелоз |
25 |
16 |
--- |
Швеция |
Аскескар |
18,5 |
8,1 |
--- |
--#-- |
Келмерский университет |
22 |
20 |
--- |
Швейцария |
Мартинджи |
160 |
130 |
60-80 |
Велико британия |
Остров Файр |
55 |
1х20, 1х50 |
--- |
--#-- |
Фолклендские острова |
10 |
10 |
--- |
--#-- |
Остров Ланди |
55 |
3х6, 1х27 |
--- |
--#-- |
Машинилес |
15 |
10 |
|
--#-- |
RAL |
16 |
7 |
|
США |
Острова Блок |
150 |
1х225,400,500 |
1800 макс |
--#-- |
Клейтон |
200 |
1х400,1700; 2х1000; 3х1250 |
1000-3500 |
В России существует значительный
нереализованный задел в
Начавшаяся перестройка, развал экономики и прекращение финансирования по программе не позволила довести указанные проекты до коммерческого уровня. Почти все проекты остались на уровне опытных и макетных образцов. Опытный образец ветроагрегата мегаваттного класса был спроектирован и построен МКБ “Радуга” , который организовал кооперацию предприятий авиационной промышленности. Разработка, изготовление и строительство финансировалось правительством Калмыкии. Ветроагрегат был построен недалеко от Элисты и успешно работает , вырабатывая 2300-2900 тыс. кВт ч электроэнергии в год. Ветроагрегат подключен к сети. В МКБ “ Радуга” были спроектированы ветроагрегаты мощностью 8кВт и 250 кВт. Российской Ассоциацией развития ветроэнергетики “ Energobalance Sovena” совместно с Германской фирмой Husumer SchiffsWert (HSW) были изготовлены 10 ветроагрегатов сетевого исполнения единичной мощностью 30 кВт. Ветропарк с установленной мощностью 300 кВт был построен в 1996 г. в Ростовской области и запущен в эксплуатацию.
Сегодня возможны следующие сценарии развития ветроэнергетики в России:
Для России предпочтительней последний сценарий, однако он сдерживается существующим налоговым законодательством, монополией производителей электроэнергии, отсутствием инвестиций и развалом производства.
На примере совершенствования модели ветра можно показать что углубление знаний в этой области позволило приблизиться к адекватной модели преобразования энергии На рис. показаны: использование упрощенной модели ветра с осредненными параметрами по времени и в пространстве до 70 годов, учет изменения скорости ветра по высоте в 75 годы, использование турбулентной модели ветра в 85 годы.
а)
Модели ветра. а) Осреднение по времени и пространству, б) Изменение скорости ветра по высоте, в) Турбулентная модель ветра
Ветер дует почти всегда неравномерно. Значит, и, генератор будет работать неравномерно, отдавая то большую, то меньшую мощность, ток будет вырабатываться переменной частотой, а то и полностью прекратится, и притом, возможно, как раз тогда, когда потребность в нем будет наибольшей. итоге любой ветроагрегат работает на максимальной мощности лип малую часть времени, а в остальное время он либо работает на пониженной мощности, либо просто стоит.
Для выравнивания отдачи тока применяют аккумуляторы, но это как уже отмечалось, и дорого, и мало эффективно.
Интенсивности ветров сильно зависят и от географии. ВЭС выгодно использовать в таких местах, где среднегодовая скорость ветра выше 3,5—4 м/с для небольших станций и выше 6 м/с для станций большой мощности. В нашей стране зоны с V S: 6 м/с расположены, в основном на Крайнем Севере, вдоль берегов Ледовитого океана, где потребности в энергии минимальны (табл. 7).
Таблица 7. Возможности использования энергии ветра в СНГ
Район |
Средняя скорость ветра, м/с |
Возможные типы ВЭС |
Побережье Ледовитого океана, отдельные места у берегов Каспийского моря |
>6 |
Крупные ВЭС по 3—4 МВт |
Европейская часть СНГ, Западная Сибирь, Казахстан, Дальний Восток, Камчатка |
3,5-6 |
ВЭС средней мощности |
Юг Средней Азии, Восточная Сибирь |
<3,5 |
Мелкие ВЭС для решения локальных задач |
Как следует из приведенных выше цифр, мощность одной ветроустановки не превышает в исключительных случаях 4 МВт, а в серийных установках — 200-250 кВт. Но и при столь малых мощностях, ветроагрегаты — довольно громоздкие сооружения. Даже сравнительно небольшой ветроагрегат "Сокол" мощностью 4 кВт состоит из мачты высотой 10 м (с трехэтажный дом) и имеет диаметр трехлопастного ротора 12м (который принято называть "колесом", хотя это вовсе и не колесо). ВЭС на большие мощности и размеры имеют соответствующие. Так, установка на 100 кВт имеет ротор диаметром 37 м с массой 907 кг, а ротор установки "Гровиан" обладает размахом лопастей 100 м при высоте башни тоже 100 м, т.е. выше 30-этажного дома! И при этом такая башня должна быть достаточно массивной и прочной, чтобы выдержать и массу громадного ротора, и вибрации, возникающие при его работе. Развивает вся эта махина сравнительно небольшую мощность — всего 3-4 МВт, а с учетом простоев из-за штилей и работы на пониженной мощности при слабом ветре, средняя мощность оказывается и того ниже — порядка 1 МВт (такое соотношение между номинальной и средней мощностями ВЭС подтверждает следующий факт: в Нидерландах на долю ВЭС приходится 0,11 % всех установленных мощностей, но вырабатывают они только 0,02% электроэнергии). Таким образом, для замены только одной АЭС мощностью 4 млн. кВт потребовалось бы соорудить около четырех тысяч (!) таких монстров с соответствующим расходом стали и других материалов (табл. 8). Если бы мы не захотели связываться с такими уникальными гигантами и решили развивать ветроэнергетику на серийных ветроагрегатах мощностью 4 кВт (средняя мощность 1 кВт), то их бы потребовалось для такой замены около 4 млн. штук. При таких масштабах количество, как говорится, переходит в качество, и возникают проблемы совсем иного рода.
Таблица 8. Параметры ВЭС для замены одной АЭС мощностью 4 млн. кВт
Параметр |
Номинальная мощность агрегата | |
4 кВт |
4 МВт | |
Средняя мощность агрегата |
1 кВт |
1МВт |
Необходимое количество агрегатов |
4 млн. |
4 тыс. |
Высота агрегата |
Юм |
150м |
Расстояние между агрегатами |
30м |
500м |
Площадь занимаемой территории |
3600 км2 |
900км2 |
Казалось бы, раз ветер дует бесплатно, значит, и электроэнергия от него должна быть дешевой. Но это далеко не так. Дело в том, что строительство большого числа ветроагрегатов требует значительных капитальных затрат, которые входят составной частью в цену производимой энергии. При сравнении различных источников, удобно сопоставлять удельные капиталовложения, т.е. затраты на получения 1 кВт установленной мощности. Для АЭС эти затраты равны примерно 1000 руб/кВт. В то же время, наша ветроустановка АВЭ-100/250, способная при скорости ветра б м/с развивать мощность 100 кВт, стоит 600 тыс руб. (в ценах 1989 г.), т.е. для нее капзатраты составляют 6000 руб./кВт. А если учесть, что ветер не всегда дует с такой скоростью, и что поэтому средняя мощность оказывается в 3-4 раза меньше максимальной, то реальные капзатраты составят порядка 20 тыс.руб./кВт, что в 20 раз выше, чем для АЭС.
Совершенно ясно, что даже к одному работающему ветряку близко подходить не желательно, и притом с любой стороны, так как при изменениях направления ветра направление оси ротора тоже изменяется. Для размещения же сотен, тысяч и тем более миллионов ветряков потребовались бы обширные площади в сотни тысяч гектаров. Дело в том, что ветроагрегаты близко друг к другу ставить нельзя, так как они могут создавать взаимные помехи в работе, "отнимая ветер" один от другого. Минимальное расстояние между ветряками должно быть не менее их утроенной высоты. Вот, и считайте сами, какую площадь придется отвести для ВЭС мощностью 4 млн.кВт.
При этом необходимо иметь в виду, что уже ничего другого на этой площади делать будет нельзя. Работающие ветродвигатели создают значительный шум, и что особенно плохо — генерируют неслышимые ухом, но вредно действующие на людей инфразвуковые колебания с частотами ниже 16 Гц. Кроме этого, ветряки распугивают птиц и зверей, нарушая их естественный образ жизни, а при большом их скоплении на одной площадке — могут существенно исказить естественное движение воздушных потоков с непредсказуемыми последствиями. Неудивительно, что во многих странах, в том числе в Ирландии, Англии и других, жители неоднократно выражали протесты против размещения ВЭС вблизи населенных пунктов и сельскохозяйственных угодий, а в условиях густо населенной Европы это означает — везде. Поэтому было выдвинуто предложение о размещении систем ветряков в открытом море. Так, в Швеции разработан проект, согласно которому предполагается в Балтийском море недалеко от берега установить 300 ветряков. На их башнях высотой 90 м будут вращаться двухлопастные пропеллеры с размахом лопастей 80 м. Стоимость строительства только первой сотни таких гигантов потребуется более 1 млрд. долл., а вся система, на строительство которой уйдет минимум 20 лет, обеспечит производство всего 2% электроэнергии от уровня потребления в Швеции в настоящее время. Но это — пока только проект. А тем временем в той же Швеции начато строительство одной ВЭС мощностью 200 кВт на расстоянии 250 м от берега, которая будет передавать энергию на землю по подводному кабелю. Аналогичные проекты были и у нас: предлагали устанавливать ветряки и на акватории Финского залива, и на Арабатской стрелке в Крыму. Помимо сложности и дороговизны подобных проектов, их реализация создала бы серьезные помехи судоходству, рыболовству, а также оказало бы все те же вредные экологические воздействия, о которых говорилось ранее. Поэтому и эти планы вызывают движения протеста. Например, шведские рыбаки потребовали пересмотра проекта строящейся в море ВЭС, так как, по их мнению, подводный кабель, да и сама станция будут плохо влиять на рыб, в частности — на угрей, мигрирующих в тех местах вдоль берега.