Ядерная физика

Автор работы: Пользователь скрыл имя, 30 Января 2013 в 19:26, реферат

Описание работы

Энергетика - важнейшая отрасль народного хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Это основа экономики государства. В мире идет процесс индустриализации, который требует дополнительного расхода материалов, что увеличивает энергозатраты. С ростом населения увеличиваются энергозатраты на обработку почвы, уборку урожая, производство удобрений и т.д

Содержание работы

Введение;
История развития атомной энергетики;
Основы ядерной энергии;
Ядерные реакторы;
Классификация реакторов;
Ядерная энергия: за и против;
Влияние ядерной энергетики на экологию;
Заключение;
Список используемой литературы.

Файлы: 1 файл

Ядерная физика.docx

— 37.11 Кб (Скачать файл)

 

Ядерная энергия: за и против

Современная цивилизация  немыслима без электрической энергии. Выработка и использование электричества увеличивается с каждым годом, но перед человечеством уже маячит призрак грядущего энергетического голода из-за истощения месторождений горючих ископаемых и все больших экологических потерь при получении электроэнергии.  
Энергия, выделяющаяся в ядерных реакциях, в миллионы раз выше, чем та, которую дают обычные химические реакции (например, реакция горения), так что теплотворная способность ядерного топлива оказывается неизмеримо большей, чем обычного топлива. Использовать ядерное топливо для выработки электроэнергии - чрезвычайно заманчивая идея. 
Преимущества атомных электростанций (АЭС) перед тепловыми (ТЭЦ) и гидроэлектростанциями (ГЭС) очевидны: нет отходов, газовых выбросов, нет необходимости вести огромные объемы строительства, возводить плотины и хоронить плодородные земли на дне водохранилищ. Пожалуй, более экологичны, чем АЭС, только электростанции, использующие энергию солнечного излучения или ветра. Но и ветряки, и гелиостанции пока маломощны и не могут обеспечить потребности людей в дешевой электроэнергии - а эта потребность все быстрее растет. И все же целесообразность строительства и эксплуатации АЭС часто ставят под сомнение из-за вредного воздействия радиоактивных веществ на окружающую среду и человека.

 

 

Мировой опыт и перспективы развития ядерной энергетики

По данным МАГАТЭ, в настоящее время более 18% электроэнергии, вырабатываемой в мире, производится на ядерных реакторах, которые не загрязняют атмосферу. Неоспоримый  плюс ядерной энергии - ее стоимость, которая ниже, чем на большинстве  электростанций иных типов. В настоящее  время в 12 странах строится 29 реакторов  общей мощностью около 25 тыс. МВт. По данным экспертов МАГАТЭ, к 2030 году мировые энергетические потребности  увеличатся не менее чем на 50-60%. Наряду с ростом энергопотребления имеет  место катастрофически быстрое  исчерпание самых легкодоступных и  удобных органических энергоносителей - газа и нефти. По прогнозным расчетам сроки их запасов - 50-100 лет. Атомная  энергетика является одним из основных мировых источников энергообеспечения. По данным все того же Международного агентства по атомной энергии, только в 2000-2005 гг. в строй было введено 30 новых реакторов. Основные генерирующие мощности сосредоточены в Западной Европе и США. Энергетическая стратегия России на период до 2020 года, утвержденная распоряжением Правительства Российской Федерации от 28.08.2003 №1234-р, устанавливает цели, задачи, основные направления и параметры развития топливно-энергетического баланса. В результате оптимизации топливно-энергетического баланса установлены приоритеты территориального размещения генерирующих мощностей: в Европейской части России развитие электроэнергетики целесообразно осуществлять за счет технического перевооружения действующих тепловых электростанций, создания мощностей парогазовых установок и максимального развития атомных электростанций, которые будут в значительной степени покрывать повышение потребности этого региона в электроэнергии.                                   В оптимистическом варианте развития экономики энерговыработка АЭС должна возрасти до 200 млрд кВтч в 2010 году (в 1,4 раза) и до 300 млрд кВтч в 2020 году (а 2 раза). Кроме того, предусматривается развитие производства тепловой энергии от атомных энергоисточников до 30 млн Гкал в год. При умеренном варианте развития экономики потребность в производстве электроэнергии на атомных станциях может составить в 2020 году до 230 млрд кВтч. Возможность увеличения производства энергии на атомных станциях до 270 млрд кВтч связана с созданием энергокомплексов АЭС - ГАЭС, повышением объемов производства и потребления тепловой энергии в районах размещения действующих и новых АЭС и АТЭЦ.                                                                           Энергетической стратегией России на период до 2020 года. Государственное планирование СССР в 80-х годах XX века определяло к началу XXI вена создание мощностей атомных станций в России до 50 ГВт с темпом роста до 2 ГВт в год и производство тепла до 40 млн Гкал в год. Кроме того, предусматривалось строительство энергокомплексов АЭС. В настоящее время более двух десятков энергоблоков атомных станций общей мощностью порядка 20 ГВт находятся на разных стадиях незавершенного строительства. Для обеспечения прогнозируемых уровней электро- и теплопотребления в максимальном варианте спроса необходим ввод генерирующих мощностей АЭС до 6 ГВт в текущем десятилетии  и не менее 15 ГВт до 2020 года, а также до 2 ГВт АТЭЦ. В результате суммарная установленная мощность атомных станций России должна увеличиться до 40 ГВт при среднем КИУМ порядка 85% (уровень ведущих стран с развитой атомной энергетикой).

В соответствии с  этим основными задачами развития атомной  энергетики являются:                                                                                                                      1) модернизация и продление на 10-20 лет сроков эксплуатации энергоблоков действующих АЭС;                                                                                              2)повышение эффективности энергопроизводства и использования энергии АЭС;                                                                                                                    3) создание комплексов по переработке радиоактивных отходов АЭС и системы обращения с облученным ядерным топливом;                       4) воспроизводство выбывающих энергоблоков первого поколения, в том числе путем реновации после завершения продленного срока их эксплуатации (при своевременном создании заделов);                           5) расширенное воспроизводство мощностей (средний темп роста - примерно 1 ГВт в год) и строительные заделы будущих периодов;                              6) освоение перспективных реакторных технологий при развитии соответствующей топливной базы.

Для решения этих задач требуются развитие строительно-монтажного комплекса и атомного энергомашиностроения, а также рост кадрового потенциала.

В соответствии с  этим основными задачами развития атомной  энергетики являются:                                                                                                                      1) модернизация и продление на 10-20 лет сроков эксплуатации энергоблоков действующих АЭС;                                                                                              2)повышение эффективности энергопроизводства и использования энергии АЭС;                                                                                                                    3) создание комплексов по переработке радиоактивных отходов АЭС и системы обращения с облученным ядерным топливом;                       4) воспроизводство выбывающих энергоблоков первого поколения, в том числе путем реновации после завершения продленного срока их эксплуатации;                                                                                                5) расширенное воспроизводство мощностей и строительные заделы будущих периодов;                                                                                            6) освоение перспективных реакторных технологий при развитии соответствующей топливной базы.

Для решения этих задач требуются развитие строительно-монтажного комплекса и атомного энергомашиностроения, а также рост кадрового потенциала.

Экология

Даже если атомная  электростанция работает идеально и  без малейших сбоев, ее эксплуатация неизбежно ведет к накоплению радиоактивных веществ. Поэтому  людям приходится решать очень серьезную  проблему, имя которой - безопасное хранение отходов. Отходы любой отрасли промышленности при огромных масштабах производства энергии, различных изделий и материалов создают огромной проблемой. Загрязнение окружающей среды и атмосферы во многих районах нашей планеты внушает тревогу и опасения. Речь идет о возможности сохранения животного и растительного мира уже не в первозданном виде, а хотя бы в пределах минимальных экологических норм. Радиоактивные отходы образуются почти на всех стадиях ядерного цикла. Они накапливаются в виде жидких, твердых и газообразных веществ с разным уровнем активности и концентрации. Большинство отходов являются низкоактивными: это вода, используемая для очистки газов и поверхностей реактора, перчатки и обувь, загрязненные инструменты и перегоревшие лампочки из радиоактивных помещений, отработавшее оборудование, пыль, газовые фильтры и многое другое. Газы и загрязненную воду пропускают через специальные фильтры, пока они не достигнут чистоты атмосферного воздуха и питьевой воды. Ставшие радиоактивными фильтры перерабатывают вместе с твердыми отходами. Их смешивают с цементом и превращают в блоки или вместе с горячим битумом заливают в стальные емкости. Труднее всего подготовить к долговременному хранению высокоактивные отходы. Лучше всего такой «мусор» превращать в стекло и керамику. Для этого отходы прокаливают и сплавляют с веществами, образующими стеклокерамическую массу. Рассчитано, что для растворения 1 мм поверхностного слоя такой массы в воде потребуется не менее 100 лет. В отличие от многих химических отходов, опасность радиоактивных отходов со временем снижается. Бoльшая часть радиоактивных изотопов имеет период полураспада около 30 лет, поэтому уже через 300 лет они почти полностью исчезнут. Так что для окончательного удаления радиоактивных отходов необходимо строить такие долговременные хранилища, которые позволили бы надежно изолировать отходы от их проникновения в окружающую среду до полного распада радионуклидов. Такие хранилища называют могильниками.                                                                          Необходимо учитывать, что высокоактивные отходы долгое время выделяют значительное количество теплоты. Поэтому чаще всего их удаляют в глубинные зоны земной коры. Вокруг хранилища устанавливают контролируемую зону, в которой вводят ограничения на деятельность человека, в том числе бурение и добычу полезных ископаемых.         Предлагался еще один способ решения проблемы радиоактивных отходов - отправлять их в космос. Действительно, объем отходов невелик, поэтому их можно удалить на такие космические орбиты, которые не пересекаются с орбитой Земли, и навсегда избавиться радиоактивного загрязнения. Однако этот путь был отвергнут из-за опасности непредвиденного возвращения на Землю ракеты-носителя в случае возникновения каких-либо неполадок.                       В некоторых странах серьезно рассматривается метод захоронения твердых радиоактивных отходов в глубинные воды океанов. Этот метод подкупает своей простотой и экономичностью. Однако такой способ вызывает серьезные возражения, основанные на коррозионных свойствах морской воды. Высказываются опасения, что коррозия достаточно быстро нарушит целостность контейнеров, и радиоактивные вещества попадут в воду, а морские течения разнесут активность по морским просторам.                Эксплуатация АЭС сопровождается не только опасностью радиационного загрязнения, но и другими видами воздействия на окружающую среду. Основным является тепловое воздействие. Оно в полтора-два раза выше, чем от тепловых электростанций.                                                                                  При работе АЭС возникает необходимость охлаждения отработанного водяного пара. Самым простым способом является охлаждение водой из реки, озера, моря или специально сооруженных бассейнов. Вода, нагретая на 5-15 °С, вновь возвращается в тот же источник. Но этот способ несет с собой опасность ухудшения экологической обстановки в водной среде в местах расположения АЭС. Большее применение находит система водоснабжения с использованием градирен, в которых охлаждение воды происходит за счет ее частичного испарения и охлаждения. Небольшие потери пополняются постоянной подпиткой свежей водой. При такой системе охлаждения в атмосферу выбрасывается огромного количество водяного пара и капельной влаги. Это может привести к увеличению количества выпадающих осадков, частоты образования туманов, облачности. В последние годы стали применять систему воздушного охлаждения водяного пара. В этом случае нет потерь воды, и она наиболее безвредна для окружающей среды. Однако такая система не работает при высокой средней температуре окружающего воздуха. Кроме того, себестоимость электроэнергии существенно возрастает.

 

 

Заключение

Энергетическая  проблема - одна из важнейших проблем, которые сегодня приходится решать человечеству. Уже стали привычными такие достижения науки и техники, как средства мгновенной связи, быстрый  транспорт, освоение космического пространства. Но все это требует огромных затрат энергии. Резкий рост производства и  потребления энергии выдвинул новую  острую проблему загрязнения окружающей среды, которое представляет серьезную  опасность для человечества.                                                                 Мировые энергетические потребности в ближайшее десятилетия будут интенсивно возрастать. Какой-либо один источник энергии не сможет их обеспечить, поэтому необходимо развивать все источники энергии и эффективно использовать энергетические ресурсы.                                                      На ближайшем этапе развития энергетики (первые десятилетия XXI в.) наиболее перспективными останутся угольная энергетика и ядерная энергетика с реакторами на тепловых и быстрых нейтронах. Однако можно надеяться, что человечество не остановится на пути прогресса, связанного с потреблением энергии во всевозрастающих количествах.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список литературы:

  1. Емельянов И.Я., Гаврилов П.А., Селивестров Б.Н. «Управление и безопасность ядерных энергетических реакторов» - Москва: «Атомиздат», 1975 г.
  2. Кащеев В.П. «Ядерные энергетические установки» - Минск: «Вышейша школа», 1989 г.
  3. Кесслер Г. «Ядерная энергетика» - Москва: «Энергоатомиздат», 1986 г.
  4. Коллиер Дж., Хьюитт Дж. «Введение в ядерную энергетику» - Москва: «Энергоатомиздат», 1989 г.
  5. Маргулова Т.Х. «Атомная энергетика сегодня и завтра» - Москва: «Высшая школа», 1989 г.
  6. Маргулова Т.Х. «Атомные электрические станции» - Москва: «Высшая школа», 1984 г.

 


Информация о работе Ядерная физика