Автор работы: Пользователь скрыл имя, 17 Июня 2015 в 17:10, курсовая работа
Электр тогын өткізу қабілетіне байланысты барлық материалдар өткізгіштер, диэлектриктер және жартылай өткізгіштер болып бөлінеді. Бұлардың электрлік қасиеттерін салыстырайық. Өткізгіштерде өте көп бос зарядты тасымалдаушы бөлшектер болады. Қатты өткізгіштердің көпшілігін металдар құрайды. Металдардың жоғарғы электр өткізгіштігі олардың кристалдық торының құрылымымен түсіндіріледі.
Металдарда барлық кезде өте көп еркін электрондар болады, олар оң зарядталған иондардан тұратын кристалдық тордың ішінде қозғалады. Заттардың электр өткізгіштігі еркін зарядты тасымалдаушылардың концентрациясына n пропорционал, яғни олардың көлем бірлігіндегі санына. Алайда электр өткізгіштік n-нің мәнімен ғана анықталып қоймайды, еркін зарядта тасымалдаушылар, электр өрісінің әсерінен кристалдық тордың ішінде қозғалғанда, сол заттың торы тарапынан кездесетін кедергіге де тәуелді, яғни заттағы осы тасымалдаушылардың қозғалғыштығымен де анықталады.
«Оптикалық және электрондық жабдықтар»
Адиятов Дамир
Тобы:9.21.13
«Оптикалық және электрондық жабдықтар»
Адиятов Дамир
Тобы:9.21.13
КІРІСПЕ
Екі өткізгішті бір-біріне түйістірген кезде жылулық қозғалыстың әсерінен электрондар бір өткізгіштен басқа өткізгішке өтеді. Егер түйісетін өткізгіштер әртүрлі материалды болып келсе немесе олардың әртүрлі нүктелеріндегі температуралары бірдей болмаса, онда электрондар диффузиясының екі жақты ағындары бірдей болмайды, осының нәтижесінде бір өткізгіш оң, ал екіншісі – теріс зарядталып қалады. Сондықтан өткізгіштің ішінде және өткізгіштер арасындағы сыртқы кеңістікте электр өрісі пайда болады. Тепе-теңдік күйінде өткізгіштің ішінде диффузия ағындарының айырмашылығын дәл компенсациялайтын өріс тұрақталанады. Осы электр өрістерінің болуына өткізгіш-өткізгіш, өткізгіш-жартылай өткізгіш, жартылай өткізгіш – жартылай өткізгіш түйісулерінде пайда болатын бірқатар құбылыстар негізделінген.
Жартылай өткізгіштердің электр өткізгіштігін зоналық теория негізінде тек кванттық механика жан-жақты түсіндіріп бере алады. Орта мектепте ол кристалдардағы коваленттік байланыс моделінің, мысалы кремний немесе германий кристалдарындағы, көмегімен түсіндіріледі. Кристалдың әр атомы (мысалы, а- атомы) өзіне жақын орналасқан төрт атоммен сегіз электрон көмегімен байланысады: оның төртеуі – қарастырылып отырған атомның электрондары да, ал қалған төртеуі бір біреуден байланысқа түсіп отырған атомдардікі.
Бұл байланысты түсіндіру жеткілікті түрде оқу және әдістемелік әдебиеттерде келтірілгендіктен, модель көмегімен талқылау керек болатын басты мәселелерге ғана тоқталамыз:
а) Егер жартылай өткізгіштің температурасы абсолют нөлге жақындаса, онда кристалдағы барлық байланыстар бұзылмайды, сондықтан жартылай өткізгіш диэлектрикке айналады.
ә) Температура жоғарылағанда немесе сыртқы әсердің себебінен кейбір байланыстар бұзылып, кристалл ішінде электр өрісінде қозғала алатын «еркін» электрондар пайда болады.
б) Электроны кетіп, байланыстың үзілген орны «кемтік» деп аталады, оның заряды оң, сондықтан кемтіктер де электр өрісінде қозғала алады.
Электр өрісіндегі электрондар мен кемтіктердің қозғалысын оқушылар шын мәнінде түсінуі тиіс. Ол үшін көрермендер залындағы бос орындар ұқсастығын пайдалануға болады. Көрермендер ауысып отырғанда бос орындар да жылжиды.
в) Егер жартылай өткізгіштер ұщтарына кернеу берілсе, онда электрондар да, кемтіктер де қозғалысқа түседі. Жалпы ток электрондар мен кемтіктер жасайтын токтардың қосындысына тең. Таза жартылай өткізгіштердің электр өткізгіштігі меншікті өткізгіштік деп аталады, олардағы электрондар саны мен кемтіктер саны өзара тең.
Жасанды жолмен жартылай өткізгіштегі еркін электрондардың санын не кемтіктердің санын көбейтуге болады. Ол үшін кремний кристалына бес валентті мышьяк атомдарын, болмаса үш валентті индий атомдарын ендіреді. Бірінші жағдайда кемтіктеріне қарағанда электрондары өте көп жартылай өткізгіш қоспа алынады, оны n –типті (negativus – теріс сөзінің бас әріпі) жартылай өткізгіш деп атайды. Ал, екінші жағдайда – кемтік саны көп болады, мұндай қоспаны р –типті (positivus – оң сөзінің бас әріпі) жартылай өткізгіш деп атайды. Ондай жағдайда n –типті жартылай өткізгіштердегі негізгі заряд тасымалдаушы – электрондар, ал р –типті жартылай өткізгіштерде – кемтіктер болып қалады.
Бұл мәселелерді оқушылардың терең түсінуі үшін «Жартылай өткізгіштер және олардың техникада қолданылуы» фильмінің сәйкес фрагменттерін көрсетуге болады.
р – n - ауысу. Жартылай өткізгіштерге тән қасиеттердің ең маңыздысы - әр типті екі жартылай өткізгіштердің түйісуі екендігі, оның р-n – ауысу деп аталатындығы айтылады. р-n – ауысу қасиетін түсіндіруді тәжірибеден бастаған тиімді. Жартылай өткізгішті диодтың бір бағытта токты жақсы өткізетіндігін, екінші бағытта өте нашар өткізетіндігі көрсетіледі.
Бұл құбылыстардың себебі жөнінде сыныпта проблемалық жағдай туғызуға болады. Алдымен әр типті өткізгіштерді түйістіргенде жүретін процесс түсіндіріледі. Дереу түйісу арқылы негізгі заряд тасымалдаушылардың nдиффузиясы басталады да, түйісу аймағында зарядтардың бейтараптануы нәтижесінде аймақтың кедергісі артып кетеді. Жартылай өткізгіштердің түйіскен жерінде пайда болған қосарланған электр қабаты зарядтар қозғалысына кедергі жасап, белгілі моментте диффузия процесін тоқтатып тастайды.
Міне осындай жартылай өткізгіштерді ток көзіне қосып көрейік. Егер ток көзінің электр өрісі р-n – ауысуда пайда болған қосарланған электр қабатының өрісіне қарама-қарсы бағытта болса, онда сыртқы электр өрісі негізгі заряд тасымалдаушыларды түйісуге қарай қозғап, ол аймақтың кедергісін азайтып жібереді. Мұндай жағдайда р-n – ауысу арқылы ток жүреді.
Егер ток көзінің электр өрісі р-n – ауысудағы электр өрісімен бағыттас болса, онда сыртқы электр өрісі негізгі заряд тасымалдаушыларды жан-жаққа тартып кетеді де, р-n – ауысу аймағындағы кедергі күрт өседі. Бұл жағдайда түйісу аймағында жапқыш қабат пайда болады деп айтады, өте аз ғана ток жүреді. Токты негізгі емес заряд тасымалдаушылар жасайды.
Қорыта келгенде, р- n – ауысудың токты бір бағытта өткізіп, екінші бағытта, практикалық тұрғыдан қарағанда, өткізбейтін қасиеті бар екен.
Жартылай өткізгішті диод. Диод деп бір р-n –ауысудан тұратын жартылай өткізгішті приборларды айтады. Диодтың құрылысын арнайы дайындалған кесте көмегімен түсіндіріп, оның жұмысын тәжірибе жасап көрсеткен тиімді.
Әрі қарай диодтың вольт-амперлік сипаттамасы қарастырылады. Токты өткізу бағытында кернеуге байланысты ток жылдам өседі де, жапқыш бағытта ток аз және кернеуге айтарлықтай тәуелді емес. Графиктен р-n – ауысудағы токтың Ом заңына бағынбайтығын байқауға болады. Жартылай өткізгішті диодтардың айнымалы токты түзету үшін қолданылатындығы айтылады. Сонымен қатар әр түрлі мақсаттарда диодтардың радио – техникада, автоматикада, телемеханикада, кеңінен қолдалынып келе жатқандығын айту керек.
Транзистор. Екі р-n – ауысудан тұратын жартылай өткізгіштік құрылғыны транзистор деп атайды (transfer – тасу, resistor – кедергі) оны екі р- типті жартылай өткізгіштер қабатының арасына n- типті жартылай өткізгіш қабатын орналастыру арқылы, немесе екі n- типті жартылай өткізгіш қабатының ортасына p- типті жартылай өткізгіш орналастыру арқылы дайындайды. Екі шеткі жартылай өткізгіштердің бірі эмиттер деп, екіншісі – коллектор деп аталады, ортағы қабатты база дейді. Бұл алынған екі р-n – ауысулардың электр тогын өткізу бағыттары бір-біріне қарама-қарсы. Эмиттер база арасына ε1 , база коллектор арасына ε2 батареяларын қосамыз. Сол жақтағы р-n – ауысу арқылы ток өтеді – ол р-n – ауысу ашық, ал оң жақтағы р-n – ауысуға батарея ток өткізбейтіндей бағытта жалғанған.
База қабаты өте жұқа болады, оның ені әдетте электрондардың еркін жолының орташа ұзындығымен өлшемдес. База енінің мұншалықты жұқа болуы эмиттерден базаға өткен электрондардың түгел дерлік екінші р-n – ауысуға өтіп кетуіне мүмкіндік жасайды. Соның нәтижесінде база-коллектор тізбегінде ток пайда болады. Ол ток шамасы эмиттер – база тізбегіндегі ток шамасына тәуелді болатындығы өзінен өзі түсінікті. Егер эмиттер – база тізбегіндегі ток өзгеретін болса, онда синхронды түрде база-коллектор тізбегіндегі ток та өзгереді.
Міне, транзистордың осы айтылған қасиеті әлсіз электр сигналдарын күшейту мақсатында қолданылады. Ол үшін әлсіз сигнал көзін эмиттер-база тізбегіне тізбектеп қосады, ондай жағдайда R кедергісін үлкен етіп алу нәтижесінде, оған түсетін кернеудің мәнін де үлкейтіп алуға болады. Транзистор көмегімен әлсіз сигналды он мың есеге дейін күшейте аламыз.
Басқа жартылай өткізгіш приборлар тәріздес транзисторлардың да радиотехникада, автоматикада, телемеханикада және техниканың басқа да салаларында қолданылатындығы жөнінде мысалдар келтіруге болады.
Тақырыпты бекіту мақсатында, ең соңында жартылай өткізгіштердің электр өткізу қасиетін металдардың электр тогын өткізумен салыстыруға болады.
І НЕГІЗГІ ҚАСИЕТТЕРІ БОЙЫНША ӨТКІЗГІШТЕРДІҢ, ДИЭЛЕКТРИКТЕРДІҢ ЖӘНЕ ЖАРТЫЛАЙ ӨТКІЗГІШТЕРДІҢ АЙЫРМАШЫЛЫҚТАРЫ
1.1 Жартылай өткізгіштердің металдардан және диэлектриктерден
айырмашылығы
Электр тогын өткізу қабілетіне байланысты барлық материалдар өткізгіштер, диэлектриктер және жартылай өткізгіштер болып бөлінеді. Бұлардың электрлік қасиеттерін салыстырайық. Өткізгіштерде өте көп бос зарядты тасымалдаушы бөлшектер болады. Қатты өткізгіштердің көпшілігін металдар құрайды. Металдардың жоғарғы электр өткізгіштігі олардың кристалдық торының құрылымымен түсіндіріледі.
Металдарда барлық кезде өте көп еркін электрондар болады, олар оң зарядталған иондардан тұратын кристалдық тордың ішінде қозғалады. Заттардың электр өткізгіштігі еркін зарядты тасымалдаушылардың концентрациясына n пропорционал, яғни олардың көлем бірлігіндегі санына. Алайда электр өткізгіштік n-нің мәнімен ғана анықталып қоймайды, еркін зарядта тасымалдаушылар, электр өрісінің әсерінен кристалдық тордың ішінде қозғалғанда, сол заттың торы тарапынан кездесетін кедергіге де тәуелді, яғни заттағы осы тасымалдаушылардың қозғалғыштығымен де анықталады.
Өткізгіште қоспаның аздаған мөлшері болуы еркін зарядты тасымалдаушылардың концентрациясын елеулі шамада өзгерте алмайды, бірақ олардың қозғалғыштығына қатты әсер етеді. Металдардың кристалдық торының құрылымының, қоспаның болуының арқасындағы бүлінуі, әдетте электрондардың қозғалғыштығын едәуір азайтып жібереді. Сондықтан, мысалы таза мыстың өткізгіштігі, аздаған қоспасы бар мыстың өткізгіштігіне салыстырғанда едәуір жоғары болады.
Диэлектриктерде еркін зарядты тасымалдаушылар тіптен болмайды. Олардың барлық электрондары белгілі бір атомдармен байланысқан болады, және электронды атомнан бөліп алу үшін едәуір энергия жұмсау керек болады. Жылулық қозғалыстың әсерінен кейбір электрондар атомдардан бөлініп шығуы мүмкін, бірақ ондай электрондардың саны диэлектриктерде өте аз болады.
Диэлектриктердің электр өткізгіштігі негізінен онда бөгде қоспалардың барлығымен анықталады. Диэлектрикте, электронын жеңіл беретін бөгде атом болса, онда еркін зарядты тасымалдаушылар пайда болады, яғни олардың концентрациясын n арттырады. Сонымен, диэлектрикке қоспа ендіру әдетте оның электр өткізгіштігінің едәуір артуына алып келеді.
Жартылай өткізгіштер өткізгіштер мен диэлектриктердің аралық жағдайын алып жатады. Таза жартылай өткізгіштерде диэлектриктерден принципиалдық айырмашылығы жоқ. Себебі бұл екеуінде де еркін зарядты тасымалдаушылар жоқ, оларды пайда ету үшін (электрондарды атомдардан жұлып алу үшін) кейбір энергия жұмсау керек. Бірақ егер бұл энергия диэлектриктер үшін өте үлкен болса, ал жартылай өткізгіштер үшін ол аз шама.
Жартылай өткізгіштердің электр өткізгіштігі олардың тазалығына өте күшті тәуелді. Диэлектриктердегі сияқты, жартылай өткізгіштерде бөгде қоспалардың болуы, мысалы басқа элементтің аздаған атомының болуы, оның электр өткізгіштігін едәуір арттырады.
1.2 Жартылай өткізгіштердің меншікті кедергілерінің
температураға тәуелділігі
Өзінің меншікті кедергісі ρ бойынша жартылай өткізгіштер металдармен ( ρ = 10-7 – 10-8 Ом.м) және диэлектриктердің (ρ > 1∙ 108 Ом.м) аралығын ала
жатады. Меншікті кедергі бағанасында, кейбір металдардың, жартылай өткізгіштердің және диэлектриктердің алатын орны 1– суретте бейнеленген.
Алайда, меншікті кедергісі бойынша заттарды топтау едәуір шартты болып саналады, өйткені бірқатар факторлардың әсерінен (температура, сәулелену, қоспалар) көптеген заттардың меншікті кедергісі өзгереді, ал оның үстіне жартылай өткізгіштерде ол қатты өзгереді. Сондықтан, жартылай өткізгіштерді металдардан ажырату үшін жалпы белгілер бойынша қарастыру керек және алдымен температураға байланысты меншікті кедергінің тәуелділік сипаты бойынша. Жартылай өткізгіштерде температура өскен сайын меншікті кедергі азаяды (2-сурет.), ал металдарда температура артқан сайын меншікті кедергі артады (3-сурет.).
Енді температураның зттардың электр өткізгіштігіне әсерінің табиғатын қарастырайық.
Температура артқанда металдарда еркін зарядты тасымалдаушылардың концентрациясы өзгермейді, ал олардың қозғалғыштығы төмендейді, өйткені тордың түйіндерінде тұрған иондардың жылулық тербелісінің амплитудасы артады, осының салдарынан, электр өрісінің әсерінен қозғалатын электрондар ағынының шашырауы артады. Сондықтан, температура көтерілгенде металдардың өткізгіштігі төмендейді, ал төмендегенде – артады, және температура 00 К-ге жақындағанда, яғни тордың түйіндерінде тұрған бөлшектердің жылулық тербелісі толық тоқталады, осы кезде кейбір металдардың электр өткізгіштігі секірмелі түрде кенет артады (төтенше өткізгіштік құбылысы).
Температура ртқанда диэлектриктердің электр өткізгіштігі нашар өседі. Алайда, диэлектрикте еркін зарядты тасымалдаушылар пайда болу үшін қажетті энергия өте жоғары, сондықтан диэлектрикті қыздырған кезде, онда елеулі еркін зарядты тасымалдаушылар мөлшері пайда болғанша, оның термиялық бүлінуі басталады.
Информация о работе Жартылай өткізгіштердің металдардан және диэлектриктерден айырмашылығы