Жидкие диэлектрики

Автор работы: Пользователь скрыл имя, 21 Октября 2013 в 07:12, реферат

Описание работы

Все вещества по электрическим свойствам условно делятся на три группы – проводники, диэлектрики и полупроводники. Диэлектрики отличаются от других веществ прочными связями электрических положительных и отрицательных зарядов, входящих в их состав. Вследствие этого электроны и ионы не могут свободно перемещаться под влиянием приложенной разности потенциалов.

Содержание работы

1. Диэлектрики. Общие сведения.
2. Роль жидких диэлектриков в современном мире.
3. Особенности жидкого состояния вещества.
4. Электропроводность жидких диэлектриков.
5. Пробой жидких диэлектриков.

Файлы: 1 файл

zhidkie_dielektriki.doc

— 60.50 Кб (Скачать файл)

 

План:

  1. Диэлектрики. Общие сведения.
  2. Роль жидких диэлектриков в современном мире.
  3. Особенности жидкого состояния вещества.
  4. Электропроводность жидких диэлектриков.
  5. Пробой жидких диэлектриков.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Диэлектрики. Общие сведения.

    Все вещества по электрическим свойствам условно делятся на три группы – проводники, диэлектрики и полупроводники. Диэлектрики отличаются от других веществ прочными связями электрических положительных и отрицательных зарядов, входящих в их состав. Вследствие этого электроны и ионы не могут свободно перемещаться под влиянием приложенной разности потенциалов. В отличие от диэлектриков в проводниках электрического тока электрические заряды не имеют таких связей, поэтому в проводниках электроны могут свободно перемещаться, создавая явление электрического тока. Практически в диэлектриках в силу ряда причин всегда имеется некоторое количество слабо связанных зарядов, способных перемещаться внутри вещества на большие расстояния. Иными словами, диэлектрики не являются абсолютными непроводниками электрического тока. Однако в нормальных условиях таких зарядов в диэлектриках очень мало, и обусловленный ими электрический ток, называемый током утечки, невелик. Проводимость диэлектриков проводимости проводников. Обычно к диэлектрикам относятся вещества, имеющие удельную электрическую проводимость не больше 10-7 – 10-8 См/м, проводникам – имеющие проводимость больше 107 См/м. К диэлектрикам относятся все газы (включая пары металлов), многие жидкости, кристаллические, стеклообразные, керамические, полимерные вещества. Поскольку свойства вещества сильно зависят от его агрегатного состояния, обычно рассматривают отдельно физические явления в газообразных, жидких и твёрдых диэлектриках.

 

 

 

Роль жидких диэлектриков в современном мире.

   В последние годы исследования механизма ионизации, электрической проводимости и пробоя жидких диэлектриков получили большое развитие в связи с важной ролью, которую эти явления играют во многих современных разделах физики, химии, техники и радиобиологии. Исследования жидких диэлектриков тесно связаны с физикой плазмы, физикой полупроводников, дозиметрией ионизирующего излучения, физикой и техникой электрической прочности материалов и т.д. Исследования механизма ионизации и электрической проводимости жидких диэлектриков имеют большое значение для так называемой физики здоровья и для медицины. Результаты этих исследований заполняют большой пробел в наших знаниях о механизме ионизации в газах и в жидкостях, а в особенности ионизации тканей и всего живого организма. Знания эти играют в настоящее время очень большую роль как в радиологии, так и во многих более общих проблемах, связанных с воздействием ионизирующего излучения на материю

Особенности жидкого  состояния вещества.

    Законы теплового  движения атомов и молекул в жидкостях особенно сложны. С одной стороны, расстояния между молекулы (атомами) жидкости почти такое же, как в твёрдом теле, поэтому поступательные перемещения ограничены и тепловое движение носит главным образом колебательный характер. С другой – в отличие от твёрдого тела при определённых условиях в жидкостях появляется возможность кооперативного перемещения одних групп молекул относительно других, что обусловливает её текучесть. Ещё одна особенность, отличающая жидкое состояние от газообразного: благодаря большим силам взаимодействия молекула, находящаяся в фиксированном положении (в состоянии колебания около определённой точки), вызывает известное упорядочение в расположении ближайших к ней молекул. Это упорядочение называют «ближним порядком».

    Электропроводность жидких диэлектриков.

    В жидких  диэлектриках бывают два основных  механизма электропроводности: ионный  и молионный. Ионная электропроводность  определяется диссоциацией молекул  жидкости, а также различных примесей  или загрязнений, которые часто встречаются на практике, так как жидкости легко загрязняются.

    В технически  чистых жидких диэлектриках всегда  содержатся те или иные примеси,  обычно легче диссоциирующие, чем  основной диэлектрик, поэтому проводимость  в них сильно зависит от чистоты жидкости: на собственную проводимость диэлектрика накладывается примесная проводимость. В зависимости от природы жидкого диэлектрика в нём могут быть разные диссоциирующие примеси. Например, нефтяному электроизоляционному маслу сопутствуют некоторые органические кислоты; само масло является химически нейтральным углеводородом. Эти кислоты благодаря лёгкой диссоциации заметно повышают удельную проводимость масла. Загрязнением в жидком диэлектрике, в частности в том же масле, является и вода, попадающая в него непосредственно из атмосферного воздуха благодаря известной гигроскопичности масла.

    Вода в жидком  диэлектрике может быть в трёх  состояниях: а) молекулярно-растворённое; б) в виде эмульсии, то есть  в виде мельчайших капель, находящихся  в жидком диэлектрике во взвешенном состоянии; в) в виде избыточной воды, не удерживающейся в эмульсии, выпадающей из неё. Избыточная вода или тонет в диэлектрике, если его плотность меньше

1000 кг/м3 (например, нефтяное масло), или всплывает на его поверхности, если плотность диэлектрика больше 1000 кг/м3 (например, хлорированный дифенил – совол).

    Лёд обычно  всплывает на поверхность трансформаторного  масла. 

    Вода в жидком  диэлектрике может переходить  из одного состояния в другое  при изменении температуры за счёт изменения растворяющей способности диэлектрика. При повышении температуры растворяющая способность увеличивается и эмульсионная вода полностью или частично переходит в молекулярно растворённое состояние, а избыточная вода – в эмульсионное в зависимости от значения температуры. При понижении температуры происходит обратный процесс. При длительном воздействии высокой температуры сказывается эффект сушки (испарения воды) жидкого диэлектрика. Гигроскопичность жидкости зависит от её состава и от наличия полярных молекул. Полярные молекулы, как правило, отличаются большой активностью, поэтому полярные жидкости легче смешиваются с различными примесями и загрязнениями.

    Например: молекулярная  растворимость воды в масле  очень мала вследствие очень  большой разницы между размерами молекул воды и масла. Межмолекулярные силы взаимодействия в этом случае препятствуют смешению масла и воды. Количество воды, поглощаемое маслом из воздуха до равновесного состояния, пропорционально относительной влажности воздуха. Скорость насыщения любой жидкости влагой, поглощаемой из атмосферного воздуха, увеличивается с увеличением поверхности соприкосновения. При наличии в нефтяном масле полярных примесей его гигроскопичность повышается, поэтому у окислившихся масел с повышенным кислотным числом влагопоглощение больше, сем у свежих.

    Известно, что в составе  жидких углеводородов могут быть молекулы разной структуры, что также сказывается на гигроскопичности. В частности масло со значительным содержанием ароматических углеводородов отличается повышенной гигроскопичностью.

    Жидким загрязнением  может быть не только вода, но и какая – либо другая  посторонняя жидкость.

    Остановимся на растворимости  в масле различных газов. Жидкие  диэлектрики в обычных условиях  всегда содержат растворённый газ; в частности, большой способностью к растворению газов отличается нефтяное масло. Разные газы по – разному растворяются в жидкости. Эта их способность обычно определяется в процентах по объёму (коэффициент растворимости). Для примера ниже приведены значения коэффициента растворимости в масле для некоторых газов: воздух 9.4; азот 8.6; кислород 16; углекислый газ 120; водород 7.

    Благодаря этому состав  воздуха, растворённого в масле,  отличается от состава атмосферного  воздуха. Обычно атмосферный воздух содержи 78% азота и 21% кислорода (по объёму), а в масле соотношение их будет таким: 69.8% азота и 30.2% кислорода.

    Изменение температуры  по – разному влияет на растворимость  газов в масле. Например, при  повышении температуры от 20 до 800С растворимость водорода и азота увеличивается, кислорода несколько понижается, а углекислого газа резко падает.

    Рассмотри  ионную электропроводность жидких  диэлектриков как основной её  вид. Собственная ионная проводимость  зависит от способности молекул к диссоциации. Легче диссоциируют молекулы, обладающие чисто ионными связями, так называемые гетерополярные. Диссоциация молекул жидкости происходит и без воздействия электрического поля; установлено, что отношение количества диссоциированных молекул в данном объёме жидкостей к их общему количеству, называемое степенью диссоциации, зависит от относительной диэлектрической проницаемости жидкости. В соответствии с этим правилом полярные жидкости, имеющие большую диэлектрическую проницаемость, имеют повышенную степень диссоциации и повышенную собственную проводимость. У жидкостей неполярных, например нефтяного электроизоляционного масла, собственная проводимость очень мала из – за слабой способности молекул углеводородов к диссоциации. У таких жидкостей электропроводность в основном носит примесный характер, а проводимость зависит как от свойств примеси, так и от её содержания в диэлектрике. Полярные жидкости особенно чувствительны к примесям. Это объясняется тем, что степень диссоциации молекул примесей в жидкости с большой относительной диэлектрической проницаемостью выше, чем в жидкости с малой диэлектрической проницаемостью. В связи с такой особенностью полярных жидкостью у них часто бывает затруднительно отделить собственную проводимость от примесной.

    Рассмотрим  закономерности молионной электропроводности. При помощи современных оптических  микроскопов с большой разрешающей способностью в жидкости можно обнаружить коллоидные частицы разного происхождения и проследить за характером их движения в электрическом поле. Коллоидные частицы переносятся электрическим полем к электроду определённого знака (при определённом напряжении). Для коллоидных частиц примесной жидкости знак заряда частицы зависит от соотношения относительных диэлектрических проницаемостей основной жидкости и примесей. Если относительная диэлектрическая проницаемость примеси меньше, чем основной жидкости, то частицы примеси заряжаются отрицательно, в противном случае – положительно. В случае неоднородного электрического поля коллоидные частицы стремятся в зону максимальной напряжённости электрического поля, к электроду соответствующего знака, вследствие этого концентрация загрязнений здесь сильно повышается за счёт известного снижения её в других зонах. Вообще при молионной электропроводности со временем частицы загрязнений сосредоточиваются у электродов, и таким образом происходит очистка жидкостей от загрязнений. При переменном напряжении вследствие непрерывного изменения направления движения коллоидных частиц эффект очистки от них не наблюдается. Вследствие эффекта очистки с течением времени после включения постоянного напряжения удельное сопротивление жидкости увеличивается.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пробой диэлектриков.

Основные понятия.

    Пробой –  потеря электрической прочности  под действием напряжённости  электрического поля – может  иметь место как в образцах  различных диэлектриков и систем  изоляции, так и в электроизоляционных системах любого электротехнического устройства – от мощных генераторов и высоковольтных трансформаторов до любого бытового прибора. Сочетание в системах изоляции материалов, разных по электрической прочности, может приводить к серьёзным осложнениям в эксплуатации самых разнообразных электротехнических устройств, особенно высокого напряжения, где изоляция работает в сильных электрических полях и может возникнуть её пробой.

    Причины пробоя бывают различными; не существует по этому единой универсальной теории пробоя. В любой изоляции пробой приводит к образованию в ней канала повышенной проводимости, достаточно высокой, чтобы произошло короткое замыкание в данном электротехническом устройстве, создающее аварийную ситуацию, по существу выводящую это устройство из строя. Однако в этом отношении пробой может проявлять себя в разных системах изоляции по – разному. В твёрдой изоляции, как правило, канал пробоя сохраняет высокую проводимость после выключения, приведшего к пробою напряжения, явление протекает необратимо. В жидких и газообразных диэлектриках вследствие высокой подвижности их частиц электрическое сопротивление канала пробоя восстанавливается вызвавшего его напряжения практически мгновенно.

Особенности пробоя жидких диэлектриков.

    Пробой жидких  диэлектриков может быть вызван  разными процессами, определяющимися  в основном состоянием жидкости, степенью её дегазации и чистотой. Наиболее часто в жидком диэлектрике  встречается влага. Газы, также, как и вода, могут находиться в жидкости в разных состояниях от молекулярного до сравнительно крупных включений – пузырьков. Как и в газах, в жидкостях в неоднородных электрических полях наблюдаются формы пробоя: неполный пробой – корона, искровой и дуговой разряд. Установлено, что развитие пробоя начинается с формирования оптических неоднородностей в межэлектродном пространстве: в местах образования будущих каналов пробоя жидкость становится малопрозрачной. Наиболее чёткие фотографии позволяют обнаружить густое переплетение микроскопических тёмных нитей – развивающийся пробой древовидной формы. Высказываются предположения, что такие оптические неоднородности связаны с образованием в жидкости газовых пузырей, вызванных её разогревом токами эмиссии, автоионизацией молекул и ёмкостными токами. Однако такая гипотеза пока количественно не проанализирована и не приобрела формы теории.

Информация о работе Жидкие диэлектрики