Использование масс-спектрометрии в современном химическом анализе

Автор работы: Пользователь скрыл имя, 10 Мая 2014 в 12:15, сочинение

Описание работы

Масс-спектрометрия — метод исследования вещества путём определения отношения массы к заряду и количества заряженных частиц, образующихся при том или ином процессе воздействия на вещество. История масс-спектрометрии ведётся с основополагающих опытов Джона Томсона в начале XX века. Окончание «-метрия» термин получил после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Файлы: 1 файл

Использование масс.docx

— 20.40 Кб (Скачать файл)

«Использование масс-спектрометрии в современном химическом анализе»

Нелюбина Анна Х-41/2

Масс-спектрометрия — метод исследования вещества путём определения отношения массы к заряду и количества заряженных частиц, образующихся при том или ином процессе воздействия на вещество. История масс-спектрометрии ведётся с основополагающих опытов Джона Томсона в начале XX века. Окончание «-метрия» термин получил после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.  

Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия непосредственно детектирует сами частицы вещества.

Масс-спектрометрия в широком смысле — это наука получения и интерпретации масс-спектров, которые в свою очередь получаются при помощи масс-спектрометров. Позволяет определить точное определение массы анализируемой молекулы и её элементный состав. Масс-спектрометрия также позволяет получить важную информацию об изотопном составе анализируемых молекул. В органических веществах молекулы представляют собой определённые структуры, образованные атомами. Природа и человек создали поистине неисчислимое многообразие органических соединений. Современные масс-спектрометры способны фрагментировать детектируемые ионы и определять массу полученных фрагментов. Таким образом, можно получать данные о структуре вещества.

Первое, что надо сделать для того, чтобы получить масс-спектр, превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы — ионы. Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ. Вторым необходимым условием является перевод ионов в газовую фазу в вакуумной части масс спектрометра. Глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы рассеются и рекомбинируют.

Разработка новых лекарственных средств для спасения человека от ранее неизлечимых болезней и контроль производства лекарств, генная инженерия и биохимия, протеомика. Без масс-спектрометрии немыслим контроль над незаконным распространением наркотических и психотропных средств, криминалистический и клинический анализ токсичных препаратов, анализ взрывчатых веществ.

Выяснение источника происхождения очень важно для решения целого ряда вопросов: например, определение происхождения взрывчатых веществ помогает найти террористов, наркотиков — бороться с их распространением и перекрывать пути их трафика. Экономическая безопасность страны более надёжна, если таможенные службы могут не только подтверждать анализами в сомнительных случаях страну происхождения товара, но и его соответствие заявленному виду и качеству. А анализ нефти и нефтепродуктов нужен не только для оптимизации процессов переработки нефти или геологам для поиска новых нефтяных полей, но и для того, чтобы определить виновных в разливах нефтяных пятен в океане или на земле.

В эпоху «химизации сельского хозяйства» весьма важным стал вопрос о присутствии следовых количеств применяемых химических средств (например, пестицидов) в пищевых продуктах. В мизерных количествах эти вещества могут нанести непоправимый вред здоровью человека.

Целый ряд техногенных веществ являются супертоксикантами. Примером является хорошо известный диоксин. Существование ядерной энергетики немыслимо без масс-спектрометрии. С её помощью определяется степень обогащения расщепляющихся материалов и их чистота.

Конечно и медицина не обходится без масс-спектрометрии. Изотопная масс-спектрометрия углеродных атомов применяется для прямой медицинской диагностики инфицированности человека Helicobacter pylori и является самым надёжным из всех методов диагностики. Также, масс-спектрометрия применяется для определения наличия допинга в крови спортсменов.

Трудно представить область человеческой деятельности, где не нашлось бы места масс-спектрометрии. Ограничимся просто перечислением: аналитическая химия, биохимия, клиническая химия, общая химия и органическая химия, фармацевтика, косметика, парфюмерия, пищевая промышленность, химический синтез, нефтехимия и нефтепераработка, контроль окружающей среды, производство полимеров и пластиков, медицина и токсикология, криминалистика, допинговый контроль, контроль наркотических средств, контроль алкогольных напитков, геохимия, геология, гидрология, петрография, минералогия, геохронология, археология, ядерная промышленность и энергетика, полупроводниковая промышленность, металлургия.

Большие принципиальные возможности масс-спектрометрии появляются при сочетании её с другими методами. Сочетание методов значительно расширяет возможности каждого из них, позволяя получать больше информации об объекте исследования:

 Оказалось полезным  двукратное, трехкратное, четырехкратное  и т.д. разделение по массам  в тандемных масс-спектрометрах. В таком приборе имеет место  «очищение» масс-спектра благодаря  дискриминации различных помех (от  рассеяния ионов на остаточных  газах, на стенках камеры и  различных эффектов столкновения  и перезарядки).

 Весьма эффективными, как для хроматографии, так и  для масс-спектрометрии, оказались  хромато-масс-спектрометры – одни из наиболее распространенных современных аналитических приборов. В них различные типы газовых, жидкостных или ионных хроматографов (электрофореза) обеспечивают предварительное разделение вещества, а индикацию разделенных веществ и измерение их содержаний осуществляет масс-спектрометр. Поэтому масс-спектрометры в хромато-масс-спектрометрах большей частью имеют дело не со смесью соединений, а с индивидуальными соединениями, на короткое время поступающими в источник ионов.

 Очень полезной оказалась  возможность практически одновременного или попеременного наблюдения массовых пиков с помощью масс-спектрометра и электромагнитного излучения – эмиссионным спектрометром. В таких «комплексных» приборах регистрируется электромагнитное излучение из масс-спектрометрических источников ионов с газовым разрядом. Весьма плодотворным, но далеко не в полной мере реализованным, оказалось совместное применение лазеров и масс-спектрометрии, которое может идти по двум – трем направлениям: применение лазеров в масс-спектрометрии, применение масс-спектрометрии для диагностики и изучения работы лазеров, масс-спектрометрический контроль работы установок по лазерному разделению изотопов.

Некоторые методы физико-химического анализа применяют одинаковые узлы или схожи по ряду моментов действия. Например, источники с индуктивно связанной плазмой используются и в масс-спектрометрии, и в оптической эмиссионной спектроскопии, а «электронный зонд», дающий локальное рентгеновское излучение элементов в рентгено-флуоресцентном анализе, идейно и частично конструктивно схож с «ионным зондом» вторичной ионной масс-спектрометрии.

 В современных аналитических  средствах весьма высок уровень  интеграции различных элементов, блоков, устройств.

Высокое масс-спектральное разрешение обычно достигается на приборах с двойной фокусировкой на базе использования магнитного и электростатического полей. Эти приборы имеет даже более древнюю традицию в масс-спектрометрии чем квадрупольные, но технически они являются более изощренными и, следовательно, стоят дороже. Сердцем прибора с двойной фокусировкой является магнит. Если ионы, имеющие одинаковую энергию, но различающиеся по массам, входят в магнитное поле перпендикулярно его направлению, они пролетают через это поле круговым траекториям под действием силы Лоренца. Радиусы их траекторий зависят от массы иона, что ведет к дисперсии по массам.

Великолепные характеристики ИСП масс-спектрометров с двойной фокусировкой были продемонстрированы в целом ряде работ. Например, измерение изотопного состава свинца при концентрации 426 ppm в стандртном стекле NIST 610 при шести независимых измерениях, выполнявшихся в течение шести дней. Каждое измерение базировалось на 12 точках абляции, каждая абляция занимала 5 секунд, во время которых 40 лазерных импульсов выжигали кратер 40 мкм диаметром и 60–80 мкм глубиной. Результаты находятся в хорошем согласии с данными, полученными термоионизационной масс-спектрометрией на том же материале.

При анализе плазмы человеческой крови в дополнение к полиатомным интерференциям, о которых говорилось ранее, возникает еще множество молекулярных ионов, базирующихся на соединениях и элементах в больших концентрациях присутствующих в образце, таких как углерод, натрий, сера, фосфор, хлор и калий. В таблице 3 приведены некоторые из этих интерференций. При использовании адекватной подготовки пробы и методов калибровки многие, но далеко не все, интерференции могут быть либо обойдены, либо скорректированы.

При разрешении 3000 или более большинство элементов могут быть измерены совершенно свободно без спектрального перекрывания с интерферирующими сигналами. Огромный пик СО+ четко отделен от анализируемого 28Si+, благодаря чему можно точно определить концентрацию кремния.

Применение этого метода высокого разрешения увеличивает число элементов, которые могут быть надежно и достоверно измерены для анализа стандартного материала второго поколения – плазмы крови. Использование масс-спекрометрии высокого разрешения помогает снизить расходы и уменьшить усилия, предпринимаемые для сертификации стандартных материалов. В противном случае, требуется проводить чрезвычайно сложные и трудоемкие операции с использованием комплиментарных спектроскопических методик или нейтронно-активационного анализа. При комбинировании с методом изотопного разбавления высокого разрешения может дать столь высокие точности характеризации эталонных стандартных образцов, которые недоступны никаким другим аналитическим методам и их комбинациям.

Шапка антарктического льда рассматривается как один из лучших архивных и детально сохраненных источников информации об изменениях химического состава атмосферы и, следовательно, может дать чрезвычайно ценные сведения для исследований, связанных с окружающей средой. Однако, измерение сверхследовых концентраций в льде и снеге оказалось предельно трудной задачей. Используемые для этих целей аналитические методы должны иметь очень низкие пределы обнаружения, не использовать концентрирования, характеризоваться очень малым расходом образца и давать возможность проводить многоэлементный анализ

ИСП масс-спектрометрия с двойной фокусировкой отвечает всем этим требованиям и была использована для определения элементного состава на сверхследовом уровне в образцах антарктического льда. Поскольку при столь низких концентрациях очень трудно избежать внесения загрязнений, образцы цилиндрической формы подразделялись на концентрические зоны. Рисунок 3 показывает существенное загрязнение внешнего кольца, главным образом, за счет пробоотборного устройства. Хотя очевидно, что внешнее загрязнение мигрировало в толщу в сторону центра цилиндра, оно не достигло центральной зоны.

Точное многоэлементное определение концентраций на уровнях фемтограмм на грамм являлось беспрецендентным до появления ИСП масс-спектрометров высокого разрешения второго поколения. Простота и высокая эффективность анализа на ИСП масс-спектрометре с двойной фокусировкой открывает новые возможности реконструирования истории депозитов взвешенных воздушных частиц в Антарктике, давая импульс исследованиям в области экологии и процессов транспорта в атмосфере, что чрезвычайно важно для климатических исследований.

 


Информация о работе Использование масс-спектрометрии в современном химическом анализе