Изучение химического состава снега

Автор работы: Пользователь скрыл имя, 06 Декабря 2012 в 17:40, реферат

Описание работы

Целью данной дипломной работы было исследование химического состава снежного покрова некоторых районов г. Рязани. Данная оценка необходима для определения примесей воздуха и тех веществ, которые снег накапливает за зиму.
Для этого необходимо решить следующие задачи:
освоить методики отбора проб;
взять пробы;
провести анализ проб;
обобщить полученные данные.

Содержание работы

Введение
Обзор литературы
Источники поступления
Кальций
Сульфаты
Хлор
Медь
Хром
Ионы водорода и гидроксильные ионы (рН)
Биологическое действие
Кальций
Сульфаты
Медь
Хром
рН
Хлор
Правила отбора проб
Методы определения
Кальций
Сульфаты
Хлориды
Медь
Ионы водорода и гидроксильные ионы (рН)
Обсуждение результатов
Материал для химического кружка
Литература

Файлы: 1 файл

Изучение химического состава снега.doc

— 165.00 Кб (Скачать файл)

Свободный хлор достаточно часто применяют для дезинфекции  питьевой воды. В промышленности хлор используют при отбеливании в бумажном производстве, производстве ваты, пластмасс, инсектицидов, растворителей, для уничтожения паразитов в холодильных установках, в металлургии для хлорирующего обжига руд цветных металлов.

Основной источник поступления  хлора в атмосферу – электролиз хлористых солей, массовые выбросы при очистке воды, сжигание продуктов, содержащих хлор. Средние концентрации хлора в атмосферном воздухе колеблются от 1 до 3,7 мг/куб.м. К промышленным предприятиям, наиболее загрязняющих атмосферу хлором, следует отнести химико-фармацевтические, металлургические, целлюлозно-бумажные. [4]

 

1.1.4 Медь

Основными источниками  поступления меди в окружающую среду  являются предприятия цветной металлургии (промышленные выбросы, отходы, сточные  воды), транспорт, медьсодержащие удобрения и пестициды, процессы сварки, гальванизации, сжигание углеводородных топлив в различных отраслях промышленности. Годовой объем техногенных поступлений меди в атмосферу составляет 56 тыс. т. Средняя концентрация меди в атмосфере города 0,09 мг/куб.м. [4]

 

1.1.5 Хром

Источники поступления  хрома в окружающую среду могут  быть как антропогенными, так и  природными.

Находящийся в природе  хром всегда встречается в трехвалентном  состоянии, шестивалентный хром в окружающей среде практически полностью является результатом хозяйственной деятельности человека. [29]

Главным антропогенным  источником поступления хрома в  окружающую среду являются предприятия  по производству цемента, стекольное производство, сжигание топлива, черная металлургия, металлообрабатывающая, автомобильная, текстильная, кожевенная, пищевая и химическая промышленность. [1, 29, 26, 31]

Промышленные отходы предприятий в виде золы, пыли, шлака, шлама содержат в своем составе  значительное количество хромовых загрязнений. Большое количество поступает в водные объекты с промышленными стоками. [7]

Основными природными источниками  загрязнения окружающей среды соединениями хрома являются обширные лесные пожары, продукты вулканической деятельности. Вода в районах, где есть месторождения  хрома может содержать повышенные его концентрации в результате выщелачивания из пород (серпентинитов и других хромосодержащих минералов). [31]

Так же некоторые количества хрома поступают в воду в процессе разложения организмов и растений. [26]

Однако не один из этих природных источников, в отличии от антропогенных , не приносит таких количеств хрома, которые представляли бы опасность для здоровья человека и животных. [31]

 

1.1.6 Ионы водорода и гидроксильные ионы (рН)

Содержание в воде водородных ионов в основном определяется количественным соотношением концентраций угольной кислоты и ее ионов. В воде угольная кислота диссоциирует:

 

H2CO3=H+HCO3

 

поэтому талые воды, содержащие большое количество растворенной двуокиси углерода, имеют, кислую реакцию. При  диссоциации гидрокарбонатов Са(НСО3) также образуются ионы НСО3. Увеличение их концентрации ведет к увеличению рН вследствие гидролиза:

 

НСО3+Н2О=Н2СО3+ОН

 

Источниками ионов водорода являются также и другие кислоты, находящиеся в талой воде (серная, ортофосфорная). Гидролиз солей тяжелых металлов имеет значение в тех случаях, когда в атмосферу попадает значительное количество сульфатов железа, алюминия, меди, и других металлов. В результате гидролиза выделяются ионы водорода:

 

Fe+2H2O=Fe(OH)2+2H

 

Величина концентрации ионов водорода (рН) обычно колеблется в атмосферных осадках от 4,6 до 6,1. [4]

 

1.2 Биологическое действие

 

В эпоху научно-технической  революции деятельность человека приобретает  масштаб геоэкологических процессов, приводит к изменению естественных биогеохимических циклов на земле, нарушению экологического равновесия в биосфере, что, в свою очередь, сказывается на самом человеке. Уровень здоровья человека в значительной степени зависит от качества среды его обитания. По мнению многих ученых факторы окружающей среды в 18-20% определяют состояние здоровья человека.

Накопившиеся десятилетиями  недостатки в природоохранной деятельности, укоренившийся потребительский  подход к природным ресурсам, а  также развитие производительных сил  без должного учета экологических последствий привели к созданию экологически опасных зон, ухудшению здоровья людей, изменению демографических характеристик (уровню рождаемости, продолжительности жизни, миграции населения), а также нанесению значительного ущерба природе.

Доля влияния загрязнения атмосферного воздуха в формировании заболеваемости системы органов дыхания составляет 20%, системы кровообращения – 9%.

Наиболее высокий индекс загрязнения в городских условиях получен по тяжелым металлам и  оксиду углерода. В структуре выбросов наибольшую долю составляют сернистый ангидрид – 35%, твердые вещества (пыль) и оксид углерода – 30%, углерод – 1,2%, оксид азота – 0,9%. [6]

В настоящее время, при  стремительном развитии производительных сил и освоении все новых и  новых энергетических мощностей, процессы биогеохимической миграции и концентрации веществ в биосфере протекают настолько быстро, что организм человека не успевает приспосабливаться к новым уровням содержания химических элементов в питьевых водах, продуктах питания и воздухе. [8]

Состояние здоровья населения  является отражением сложного комплекса  явлений в окружающей среде. На процесс  его формирования влияет целый ряд  биологических, антропогенных, природно-климатических  и др. факторов.

В настоящее время  в Рязанской области наблюдается стабильная тенденция к росту злокачественных новообразований и смертности населения от них.

Уровень опухолевых заболеваний  в области 1,2 раза превышает аналогичный показатель по Российской Федерации.

Вызывает беспокойство выраженный рост показателей распространенности данной патологии среди детей. [7]

 

1.2.1 Кальций

Кальций является важнейшим  биогенным элементом, его вредное  действие возможно лишь при поступлении  в организм в очень больших  дозах. В виде пыли или аэрозоля соединения кальция оказывают сильное прижигающее действие на кожу и слизистые оболочки. Особенно опасен СаО, действие, которого состоит в омылении жиров, поглощении из кожи влаги, растворении белков, раздражении тканей. Поражаются также глубокие дыхательные пути и особенно легкие.

Соединения кальция постоянно содержатся в почве и природных водах, а также в животных и растительных организмах. Растения извлекают из почвы кальций в больших количествах, однако, истощение почв в отношении этого элемента наблюдается сравнительно редко.

Жесткие требования по содержанию кальция предъявляются к водам, поскольку в присутствии карбонатов, сульфатов и ряда других анионов кальция образует прочную накипь. [3]

 

1.2.2 Сульфаты

Сульфаты активно участвуют  в сложном круговороте серы. При  отсутствии кислорода под действием сульфатредуцирующих бактерий они восстанавливаются до сероводорода и сульфидов, которые в природной воде кислорода снова окисляются до сульфатов.

 Растения и животные извлекают растворенные в воде сульфаты для построения белкового вещества.

 Сульфаты мало токсичны, обладают раздражающим эффектом. Повышенное содержание сульфатов ухудшает органолептические свойства воды и оказывают физиологическое действие на организм человека. При приеме внутрь они действуют как «осмотическое» слабительное, причем токсического эффекта обычно не наблюдается вследствие медленного всасывания и быстрого воздействия.

 Основная часть сульфатов, поступивших на поверхность почвы, удерживается в верхней части почвенного профиля (глубина до 20 см) и содержание их в течение года остается в исходной форме. Растения поглощают малую часть сульфатов, то есть в почве идет процесс накопления сульфатов. [1]

 

1.2.3 Медь

Медь относится к  числу активных микроэлементов, участвующих  в процессе фотосинтеза и влияющих на усвоение азота растениями. Недостаток содержания меди в почве отрицательно влияет на синтез белков, жиров и витаминов и способствует бесплодию растительных организмов. Вместе с тем, избыточные концентрации меди оказывают неблагоприятные воздействия на растительные и животные организмы.

Медь и её соединения весьма токсичны для почвенной микрофлоры. Загрязнение  субпесчанной почвы медью может  привести к угнетению активности нитрифицирующих бактерий. Медь заметно  сдерживает минерализацию азота.

Избыток её в почве ведет к  развитию хлороза у растений, недостаток снижает урожай и высоту. Соединения меди весьма токсичны для всех представителей водной фауны и флоры. При минимальных концентрациях гибнут пресноводные полипы и пиявки.

В организме человека медь главным образом содержится в виде комплексных органических соединений и играет важную роль в процессах кроветворения. При недостатке меди в организме человека относительно часто встречается рахит. Во вредном действии избытка меди решающую роль, по-видимому, играет реакция Сu (II) с SH-группами ферментов. С колебаниями содержания меди, вступая в реакцию с белками тканей, оказывает резкое раздражение на слизистые оболочки верхних дыхательных путей и желудочно-кишечного тракта.

При хронической интоксикации медью и её солями возможны функциональные расстройства нервной системы, нарушение функций почек и печени, изъязвление носовой перегородки. [1]

 

1.2.4 Хром

Хром присутствует во всех растениях, но не доказано, что  он является для них эссенциальным  элементом. Вероятно, что небольшое количество трехвалентного хрома стимулирует рост растений и процесс фотосинтеза, способствует образованию хлорофилла. [30]

Хром, как и большинство  веществ, может всасываться растениями, как через корневую систему, так  и через поверхность листьев. Из участков всасывания переносятся небольшие количества хрома, однако хелатированная форма транспортируется через все растение.

Концентрация металла  в употребляемых в пищу растениях  колеблется от не улавливаемых до 0,19 мг/кг сырой массы.

Вода, содержащая 5 мг/л хрома, вредно влияет на растения; при концентрации 10 мг/л наблюдается хлороз, а при 15 – 50 мг/л металла в воде задерживается рост растений. [1]

Хром так же оказывает  влияние и на рыб. Под влиянием хрома может повышаться чувствительность рыбы к инфекциям; высокие концентрации оказывают повреждающее действие на жаберный аппарат и/или накапливаются в различных тканях рыб.

Для человека ингаляция  атмосферным воздухом, загрязненного  соединениями хрома, может вызвать  ряд негативных эффектов. [1]

 

1.2.5 рН

Величина рН – один из важнейших показателей качества воды и почвы.

Концентрация ионов  водорода имеет большое значение для химических и биологических  процессов, происходящих в природных  водах. От величины рН зависит развитие и жизнедеятельность водных растений, устойчивость различных форм миграции элементов, агрессивное действие воды на металл и бетон, токсичность загрязняющих веществ. Величина рН воды также влияет на процессы превращения различных фор биогенных элементов.

Содержание ионов водорода в почве оказывает влияние на жизнедеятельность растений. Протоны входят в состав почвенно-поглощающего комплекса, обуславливая кислотность почвы. Различные группы растений могут существовать только на почвах с определенной кислотностью, поэтому этот показатель используется в сельском хозяйстве. [1]

 

1.2.6 Хлор

Хлор поступает в  питьевую воду в виде свободного, для  дезинфекции, или при выбросе  сточных вод с промышленных предприятий. При большой концентрации в организме  способствует угнетению желудочной секреции, уменьшению диуреза, повышению артериального давления и другие нарушения, оказывающиеся особо вредными для больных с заболеваниями сердца и почек. Однако все эти проявления могут возникать лишь при концентрации хлоридов в питьевой воде, превышающий порог их вкусового ощущения. [3]

Хлор отрицательно действует  на организм. Он оказывает раздражающее и прижигающее действие, вызывая  некроз тканей, а затем первичное  токсико-химическое воспаление, к которому может в дальнейшем присоединиться вторичная инфекция. При небольших концентрациях вызывает общее недомогание. При больших дозах поступления в организм появляется сильный кашель, боль и стеснение в груди, одышка, кровохаркание.

Накопление хлора в  листьях является одной из причин потери декоративности растений, выращиваемых вдоль автомагистралей городов и вблизи промышленных предприятий. Наиболее устойчивы к действию хлора ива плакучая, тополь канадский, акация белая, вяз гладкий.[1]

Реформирование экономики  в России привело к увеличению давления на природную среду в  связи с приоритетом принципа получения максимальных прибылей в новых экономических структурах и наращиванию экстенсивных методов природных ресурсов. В этих условиях вопросы охраны окружающей среды и рационального природопользования отодвигаются на второй план из-за резкого ухудшения экономического положения возникновения проблем большей части населения.

Информация о работе Изучение химического состава снега