Кальциевая АТФаза

Автор работы: Пользователь скрыл имя, 28 Ноября 2013 в 16:10, реферат

Описание работы

В цитоплазме клеток концентрация ионов кальция составляет всего 50-100 нМ (5 " 10- 8-1 " 10- 7 М), тогда как в окружающей клетки среде она равна примерно 3 мМ (3 " 10- 3 М). Поддерживает эту разницу в концентрации (на четыре порядка величины) система активного транспорта ионов кальция, главную роль в которой играет кальциевый насос - фермент кальциевая АТФаза, сокращенно Са-АТФаза. Точнее говоря, не один фермент, а группа кальциевых АТФаз, различающихся по локализации в клетке, строению и способу регуляции. Но все эти ферменты переносят ионы кальция из клеточного сока во внеклеточную жидкость или внутриклеточные депо кальция - пузырьки эндоплазматического ретикулума за счет энергии гидролиза АТФ, поддерживая тем самым низкую концентрацию ионов кальция в цитоплазме.

Содержание работы

Введение 2
ВЫДЕЛЕНИЕ И ОЧИСТКА Са-АТФазы 3
СТРОЕНИЕ КАЛЬЦИЕВОЙ АТФазы 4
Регуляция активности транспортных АТФаз 5
Нарушение активности кальциевой АТФазы 6
Заключение 7
Список литературы: 8

Файлы: 1 файл

Кальциевая атфаза готовый (Автосохраненный).docx

— 28.20 Кб (Скачать файл)

 

 

Государственное бюджетное образовательное учреждение

Высшего профессионального образования

«Новосибирский  медицинский государственный университет

Министерства  здравоохранения Российской Федерации»

(ГБОУ  ВПО НГМУ Минздрава России)

КАФЕДРА МЕДИЦИНСКОЙ ХИМИИ

РЕФЕРАТ

на тему «Кальциевая АТФаза»

 

Выполнил 

Студент 1-го курса группы №18

Лечебного факультета

С.Ю. Гурченко

Проверил

О.И. Гимаутдинова

Оценка:

Подпись: _________

Новосибирск

2013

 

Оглавление

 

Введение 2

ВЫДЕЛЕНИЕ И ОЧИСТКА Са-АТФазы 3

СТРОЕНИЕ КАЛЬЦИЕВОЙ АТФазы 4

Регуляция активности транспортных АТФаз 5

Нарушение активности кальциевой АТФазы 6

Заключение 7

Список литературы: 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

В цитоплазме клеток концентрация ионов кальция  составляет всего 50-100 нМ (5 " 10- 8-1 " 10- 7 М), тогда как в окружающей клетки среде она равна примерно 3 мМ (3 " 10- 3 М). Поддерживает эту разницу в концентрации (на четыре порядка величины) система активного транспорта ионов кальция, главную роль в которой играет кальциевый насос - фермент кальциевая АТФаза, сокращенно Са-АТФаза. Точнее говоря, не один фермент, а группа кальциевых АТФаз, различающихся по локализации в клетке, строению и способу регуляции. Но все эти ферменты переносят ионы кальция из клеточного сока во внеклеточную жидкость или внутриклеточные депо кальция - пузырьки эндоплазматического ретикулума за счет энергии гидролиза АТФ, поддерживая тем самым низкую концентрацию ионов кальция в цитоплазме.

Этот  процесс в цитоплазме покоящихся клеток создает возможность регуляции  клеточных функций путем увеличения проницаемости клеточных мембран  для Ca2 +: входя в клетку, эти ионы активируют великое множество различных  внутриклеточных процессов. Яркий  пример - сокращение мышцы, которое  начинается с выхода ионов кальция  из саркоплазматического ретикулума и его взаимодействия с сократительными белками. Последующее удаление Ca2 + из цитоплазмы и накопление его в емкостях эндоплазматического ретикулума осуществляются Са-АТФазой и приводят к расслаблению мышцы (рис. 1). В других клетках ионы кальция, входя пассивно через открывающиеся каналы, связанные с различными рецепторами, также играют роль посланников, дающих приказы включить ту или иную внутриклеточную систему. После исполнения приказа "посланников" надо выпроводить из цитоплазмы, что и делают Са-АТФазы, а также Na+-Ca2 +-обменники.

Кальциевые  АТФазы, входящие в состав цитоплазматических мембран и внутриклеточных мембран, различаются по ряду свойств. Все Са-АТФазы представляют собой мономерные белки, то есть состоят из единственной полипептидной цепи, но несколько различаются по молекулярной массе. Так, Са-АТФаза саркоплазматического ретикулума имеет молекулярную массу 108 кД, а плазматическая Са-АТФаза - 120 кД. Лучше всего изучена Са-АТФаза саркоплазматического ретикулума поперечнополосатых мышц, и именно ее строение и работа будут рассмотрены подробно в данном реферате.

 

 

ВЫДЕЛЕНИЕ И ОЧИСТКА Са-АТФазы

Изучение механизма транспорта Са2 + при работе Са-АТФазы проводилось главным образом на изолированных пузырьках саркоплазматического ретикулума (СР), полученных после гомогенизации тканей путем последовательных центрифугирований. Пузырьки СР в электронном микроскопе выглядят так же, как и другие мембранные структуры. На сколах замороженных суспензий изолированных пузырьков саркоплазматического ретикулума видны внутримембранные частицы диаметром около 9 нм. Эти глобулярные частицы на поверхности скола образуются вследствие внедрения в гидрофобную зону мембраны участков полипептидной цепи Са-АТФазы. Анализ белкового состава пузырьков показывает, что основным белком в ретикулуме является Са-АТФаза (70-80% всех белков). Используя различные приемы, можно очистить Са-АТФазу от других белков. Правда, при очистке обычно повреждается мембрана, и изучать транспортную функцию становится невозможным. Но, добавив фосфолипиды, удается восстановить целостность везикул и получить прекрасный объект для изучения функции Са-АТФазы: фосфолипидные пузырьки со встроенным в них работающим ферментом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СТРОЕНИЕ КАЛЬЦИЕВОЙ АТФазы

Выражение "О ферментах, как и о людях, судят по их действию" сейчас уже  не так бесспорно. Многие ферменты получены в виде кристаллов, и на основании  рентгеноструктурного анализа воссоздана их подробная пространственная структура, а подчас и структура их комплексов с субстратами и ингибиторами. К сожалению, транспортные АТФазы, нерастворимые в воде и работающие в составе мембран, не удается получить в виде настоящих кристаллов. Тем не менее многое об их структуре все же известно, включая последовательность аминокислот в полипептидной цепи, локализацию мест связывания ионов и АТФ в полипептидной цепи и расположение определенных участков цепи по отношению к мембране.

На  рис. 4 приведено схематическое изображение  Са-АТФазы саркоплазматического ретикулума скелетных мышц. Фермент пронизывает мембрану 11-ю a-спиральными участками, большая часть которых соединена снаружи короткими полипептидными связками, за исключением двух протяженных гидрофильных (то есть хорошо растворимых в воде) петель на стороне цитоплазмы. Более короткая петля расположена между a-спиралями М2 и М3, более длинная - между a-спиралями М4 и М5. Длинная петля содержит АТФ-связывающий участок, включающий остаток аспарагиновой кислоты, к которому присоединяется фосфат. Связывание ионов Ca2 + происходит на участке, образованном малой петлей (между a-спиралями М2 и М3), возможно с участием аминокислотных остатков, прилежащих к спиралям М1 и М4. В местах связывания собрано несколько остатков аспарагиновой кислоты, несущих отрицательные заряды.

 

 

 

 

 

 

 

 

Регуляция активности транспортных АТФаз

Активность  кальциевых АТФаз внутриклеточных депо (например, эндоплазматического ретикулума клеток сердца, печени или эпителия) регулируется особым белком - фосфоламбаном, который связывает участок пептидной цепи АТФазы неподалеку от места фосфорилирования (см. рис. 4) и тормозит работу фермента за счет уменьшения сродства участков связывания Ca2 + к этому иону. При необходимости внутриклеточные регуляторные системы отцепляют фосфоламбан от АТФазы, и ее работа восстанавливается. Это осуществляется за счет фосфорилирования фосфоламбана протеинкиназами. Фосфорилированный фосфоламбан не обладает способностью связываться с Са-АТФазой и снижать ее активность.

Основным  регулятором кальциевых АТФаз цитоплазматической мембраны служит другой белок - кальмодулин. Его действие как бы противоположно действию фосфоламбана. Дело в том, что цитоплазматическая Са-АТФаза обладает любопытной способностью ингибировать саму себя. Ее С-конец, экспонированный в цитоплазму, загибается и, подобно жалу скорпиона, поражает Са-АТФазу, блокируя центры связывания кальция. Кальмодулин берет на себя функцию защитника: он связывается с участком вблизи С-конца (см. рис. 4) и снимает ингибирование Са-АТФазы, лишая полипептидный хвост способности связываться с активным участком АТФазы. Таким образом, если фосфоламбан ингибирует эндоплазматическую Са-АТФазу, то кальмодулин реактивирует аутоингибированную цитоплазматическую Са-АТФазу. Несмотря на противоположное действие, кальмодулин и фосфоламбан - родственники: сравнение аминокислотных последовательностей показывает, что многие участки полипептидной цепи у них совпадают. Изобретательная природа сумела один и тот же исходный материал (белок-предшественник, как бы пракальмодулин) приспособить для выполнения противоположных функций.

 

 

 

 

 

Нарушение активности кальциевой АТФазы

У экспериментальных  животных, страдающих гипертонией, снижена  активность кальциевых АТФаз в гладких мышцах стенок кровеносных сосудов. Это снижение активности приводит к повышению содержания внутриклеточного кальция. А поскольку ионы Ca2 + запускают механизм мышечного сокращения, тонус сосудистой стенки будет усилен, что приведет к повышению кровяного давления в целом организме.

В числе  причин поражения Са-АТФазы у гипертоников называют активацию процессов с участием свободных радикалов. Действительно, в модельных опытах с изолированными везикулами саркоплазматического ретикулума было показано, что Са-АТФаза очень чувствительна к перекисному окислению липидов, при котором происходит окисление SH-групп, входящих в активный центр фермента. Мало того, что подпорченная таким образом Са-АТФаза перестает качать ионы кальция (рис. 5); из насоса она превращается в канал для кальция, через который эти ионы начинают переноситься не из цитозоля в ретикулум, как им полагается, а, наоборот, из ретикулума, где их концентрация выше, в клеточный сок, где их концентрация ниже (рис. 6).

Превращение Са-АТФазы из помпы в канал предопределено ее структурой. Подобно велосипедному насосу, Са-АТФаза состоит из трубки, поршня и клапанов. Трубка - это ионный канал, состоящий из сравнительно небольшого фрагмента полипептидной цепи, который удалось отделить от остальной части АТФазы обработкой фермента протеазами, выделить и очистить. При встраивании этих фрагментов в липосомы их мембраны становятся проницаемыми для ионов Са2 +. При перекисном окислении липидов, окружающих АТФазу, ее поршень и клапаны, по-видимому, ломаются, и ионы кальция начинают беспрепятственно течь по трубке в сторону меньшей концентрации.

Подобного типа повреждение кальциевых насосов  происходит нередко. Хорошо известна роль свободных радикалов в развитии широкого круга так называемых дегенеративных болезней, включая рак, многие интоксикации, болезни, связанные с атеросклерозом и иммунными нарушениями. Во многих случаях повреждение Са-АТФаз свободными радикалами может играть не последнюю роль в зарождении и развитии заболевания.

Заключение

Следуя из выше сказанного, можно сделать вывод о том, что изменение концентрации ионов кальция внутри клетки играет важнейшую роль во многих процессах жизнедеятельности нейронов, таких как высвобождение медиатора в синаптическую щель, активация ионных каналов в клеточной мембране, а также регуляция целого ряда цитоплазматических ферментов.

В мышечных клетках кальций  играет ключевую роль в запуске процесса сокращения мышечного волокна. Все  эти функции связаны с кратковременным  повышением концентрации кальция в  цитоплазме, поэтому важной задачей  для клетки является поддержание  неизменного уровня кальция в  покое. В противном случае различные  кальций - зависимые механизмы будут  активироваться не в ответ на специфическое  раздражение, а постоянно.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список литературы:

  1. Кальциевые  насосы живой клетки (Владимиров Ю.А., 1998), Биология.
  2. Пригожин И., Николис Г. Познание сложного. Введение (1990) 
  3. Пригожин И., Гленсдорф П. Термодинамическая теория структуры, устойчивости и флуктуации (1973)
  4. Левицкий Д.О. Кальций и биологические мембраны. М.: Высш. шк., 1990.

 

 


Информация о работе Кальциевая АТФаза