Нахождение Mg в природе

Автор работы: Пользователь скрыл имя, 16 Февраля 2015 в 17:40, доклад

Описание работы

Магний(Mg) — один из десяти наиболее распространенных элементов земной коры (8-е место). В ней содержится 2,35% магния по массе. Из-за высокой химической активности в свободном виде магний не встречается, а входит в состав множества минералов — силикатов, алюмосиликатов, карбонатов, хлоридов, сульфатов и др

Содержание работы

1.Нахождение Mе в природе
2.Способы лабораторного и промышленного производства
3.Строение атома
4.Физические свойства Mе
5.Химические свойства Mе
6.Водородные соединения Mе и их свойства
7.Кислородные соединения Mе и их свойства
8.Кислоты (основания) Mе
9.Соли Mе и их свойства
10. Применение в промышленности Mе
11. Физиологическая роль Mе и его соединений
12.Применение Mе в медицине
13.Литература

Файлы: 1 файл

химия доклад.docx

— 42.67 Кб (Скачать файл)

                                           Оглавление

1.Нахождение Mе в природе 
2.Способы лабораторного и промышленного производства  
3.Строение атома  
4.Физические свойства Mе 
5.Химические свойства Mе 
6.Водородные соединения Mе и их свойства  
7.Кислородные соединения Mе и их свойства  
8.Кислоты (основания) Mе 
9.Соли Mе и их свойства  
10. Применение в промышленности Mе 
11. Физиологическая роль Mе и его соединений  
12.Применение Mе в медицине  
13.Литература

 

 

 

 

 

 

 

 

 

 

 

Нахождение Mg в природе

 Магний(Mg) — один из десяти наиболее распространенных элементов земной коры (8-е место). В ней содержится 2,35% магния по массе. Из-за высокой химической активности в свободном виде магний не встречается, а входит в состав множества минералов — силикатов, алюмосиликатов, карбонатов, хлоридов, сульфатов и др. Так, магний содержат широко распространенные силикаты оливин (Mg,Fe)2[SiO4] и серпентин Mg6(OH)8[Si4O10]. Важное практическое значение имеют такие магнийсодержащие минералы, как асбест, магнезит, доломит MgCO3·CaCO3, бишофит MgCl2·6H2O, карналлит KCl·MgCl2·6H2O, эпсомит MgSO4·7H2O, каинит KCl·MgSO4·3H2O, астраханит Na2SO4·MgSO4·4H2O и др. Магний содержится в морской воде (4% Mg в сухом остатке), в природных рассолах, во многих подземных водах.

Способы лабораторного и промышленного производства

Обычный промышленный метод получения металлического магния — это электролиз расплава смеси безводных хлоридов магния MgCl2, натрия NaCl и калия KCl. В этом расплаве электрохимическому восстановлению подвергается хлорид магния: MgCl2 (электролиз) = Mg + Cl2.

Расплавленный металл периодически отбирают из электролизной ванны, а в нее добавляют новые порции магнийсодержащего сырья. Так как полученный таким способом магний содержит сравнительно много — около 0,1% примесей, при необходимости «сырой» магний подвергают дополнительной очистке. С этой целью используют электролитическое рафинирование, переплавку в вакууме с использованием специальных добавок — флюсов, которые «отнимают» примеси от магния, или перегонку (сублимацию) металла в вакууме. Чистота рафинированного магния достигает 99,999% и выше.

Разработан и другой способ получения магния — термический. В этом случае для восстановления оксида магния при высокой температуре используют кокс: MgO + C = Mg + CO

или кремний. Применение кремния позволяет получать магний из такого сырья, как доломит CaCO3·MgCO3, не проводя предварительного разделения магния и кальция. С участием доломита протекают реакции:

CaCO3·MgCO3 = CaO + MgO + 2CO2,

2MgO + 2CaO + Si = Ca2SiO4 + 2Mg.

Преимущество термического способа состоит в том, что он позволяет получать магний более высокой чистоты. Для получения магния используют не только минеральное сырье, но и морскую воду.

Строение атома.

МАГНИЙ химический элемент IIА группы третьего периода периодической системы Менделеева, атомный номер 12, атомная масса 24,305. Природный магний состоит из трех стабильных нуклидов: 24Mg (78,60% по массе), 25Mg (10,11%) и 26Mg (11,29%). Электронная конфигурация нейтрального атома 1s22s2 2p63s2, согласно которой магний в стабильных соединениях двухвалентен (степень окисления +2).

В отличии от Бериллия магний не является кайносимметричным элементом. В невозбужденном состоянии два его валентных электрона находятся на 3S- орбитали. В силу этого ионизационные потенциалы магния меньше, чем бериллия, а потому соединения магния характеризуются большей долей ионности связей. Магний относят к щелочно-земельным металлам. По комплексообразовательной способности магний также уступает бериллию. Комплексы магния с органическими лигандами очень важны для жизнедеятельности живых организмов.

 

Физические свойства Mе

Магний представляет собой блестящий серебристо-белый металл, пластичный и ковкий, сравнительно мягкий. Прочность и твердость магния для литых образцов минимальны по распространенности, более высоки для прессованных образцов. Магний практически в пять раз легче, чем медь и в четыре с половиной раза легче, чем железо. Даже, как его называют, «крылатый» металл алюминий в полтора раза тяжелее, чем магний. В отличие от бериллия парамагнитен. Для сравнения магния с бериллием и щелочно-земельным и металлами ниже приведены некоторые свойства элементов 2А-группы:

 

 

Be

Mg

Ca

Sr

Ba

Содержание в земной коре масс.%

 

3,8*10-4

 

1,9

 

3,3

 

3,4*10-2

 

     6,5*10-2

Валентная электронная конфигурация

[He]2s2

[Ne]3s2

[Ar]4s2

[Kr]5s2

[Xe]6s2

Атомный радиус, нм

0,113

0,160

0,197

0,125

0,221

Ион. радиус

0,034

0,074

0,104

0,120

0,138

Температура плавления, С

1283

650

847

770

718

Температура кипения, С

2970

1104

1470

1375

1687

Плотность, г/см3

1,85

1,74

1,54

2,63

3,76


 

Температура плавления у магния не так высока, как у некоторых других металлов и составляет  всего 650°С, однако расплавить магний в обычных условиях довольно трудно: при нагревании в атмосфере воздуха до температуры 550 °С, магний вспыхивает и незамедлительно сгорает очень ярким ослепительным пламенем (данной свойство магния очень широко используется в изготовлении предметов пиротехники). Чтобы поджечь данный металл, нужно просто поднести зажженную спичку к нему, в атмосфере хлора магний начинает греть даже при сохранении комнатной температуры. При сгорании магния начинает выделяться огромное количество тепла и ультрафиолетовых лучей: четыре грамма данного «топлива» хватает для того, чтобы довести до кипения стакан с ледяной водой.

Металлический магний имеет гексагональную кристаллическую решетку. Температура кипения магния равна 1105°C, плотность металла составляет 1,74 г/см3 ( таким образом, магний является очень легким металлом, легче которого лишь кальций, а также щелочные металлы). У магния стандартный электродный потенциал Mg/Mg2+ –2,37В. Среди ряда стандартных потенциалов располагается он перед алюминием и за натрием. Атомный радиус магния 1,60Å, а ионный радиус составляет Mg2+ 0,74Å.

Химические свойства Mе

Поверхность магния покрыта плотной пленкой оксида MgO, при обычных условиях надежно защищающей металл от дальнейшего разрушения. Только при нагревании металла до температуры выше примерно 600°C он загорается на воздухе. Горит магний с испусканием яркого света, по спектральному составу близкого к солнечному. Поэтому раньше фотографы при недостаточной освещенности проводили съемку в свете горящей ленты магния. При горении магния на воздухе образуется рыхлый белый порошок оксида магния MgO:

2Mg + O2 = 2MgO.

Одновременно с оксидом образуется и нитрид магния Mg3N2:

3Mg + N2 = Mg3N2.

C холодной водой  магний не реагирует (или, точнее, реагирует, но крайне медленно), а с горячей водой он вступает во взаимодействие, причем образуется рыхлый белый осадок гидроксида магния Mg(OH)2:

Mg + 2H2O = Mg(OH)2 + H2.

Если ленту магния поджечь и опустить в стакан с водой, то горение металла продолжается. При этом выделяющийся при взаимодействии магния с водой водород немедленно загорается на воздухе. Горение магния продолжается и в атмосфере углекислого газа:

2Mg + CO2 = 2MgO + C.

Способность магния гореть как в воде, так и в атмосфере углекислого газа существенно усложняет тушение пожаров, при которых горят конструкции из магния или его сплавов.

Оксид магния MgO представляет собой белый рыхлый порошок, не реагирующий с водой. Раньше его называли жженой магнезией или просто магнезией. Этот оксид обладает основными свойствами, он реагирует с различными кислотами, например:

MgO + 2HNO3 = Mg(NO3)2 + H2O.

Отвечающее этому оксиду основание Mg(OH)2 — средней силы, но в воде практически нерастворимо. Его можно получить, например, добавляя щелочь к раствору какой-либо соли магния:

2NaOH + MgSO4 = Mg(OH)2 + Na2SO4.

Так как оксид магния MgO при взаимодействии с водой щелочей не образует, а основание магния Mg(OH)2 щелочными свойствами не обладает, магний, в отличие от своих «согруппников» — кальция, стронция и бария, не относится к числу щелочноземельных металлов.

Металлический магний при комнатной температуре реагирует с галогенами, например, с бромом:

Mg + Br2 = MgBr2.

При нагревании магний вступает во взаимодействие с серой, давая сульфид магния:

Mg + S = MgS.

Если в инертной атмосфере прокаливать смесь магния и кокса, то образуется карбид магния состава Mg2C3 .При разложении карбида магния водой образуется гомолог ацетилена — пропин С3Н4:

Mg2C3 + 4Н2О = 2Mg(OH)2 + С3Н4.

В поведении магния есть черты сходства с поведением щелочного металла лития (пример диагонального сходства элементов в таблице Менделеева). Так, магний, как и литий, реагирует с азотом (реакция магния с азотом протекает при нагревании), в результате образуется нитрид магния:

3Mg + N2= Mg3N2.

Как и нитрид лития, нитрид магния легко разлагается водой:

Mg3N2 + 6Н2О = 3Mg(ОН)2 + 2NН3.

Сходство с литием проявляется у магния и в том, что его карбонат MgCO3 и фосфат Mg3(PO4)2 в воде плохо растворимы, как и соответствующие соли лития.

С кальцием магний сближает то, что присутствие в воде растворимых гидрокарбонатов этих элементов обусловливает жесткость воды. Как и в случае гидрокарбоната кальция, жесткость, вызванная гидрокарбонатом магния Mg(HCO3)2, — временная. При кипячении гидрокарбонат магния Mg(HCO3)2 разлагается и в осадок выпадает его основной карбонат — гидроксокарбонат магния (MgOH)2CO3:

2Mg(HCO3)2 = (MgOH)2CO3 + 3CO2 + Н2О.

Практическое применение до сих пор имеет перхлорат магния Mg(ClO4)2, энергично взаимодействующий с парами воды, хорошо осушающий воздух или другой газ, проходящий через его слой. При этом образуется прочный кристаллогидрат Mg(ClO4)2·6Н2О. Это вещество можно вновь обезводить, нагревая в вакууме при температуре около 300°C. За свойства осушителя перхлорат магния получил название «ангидрон».

Кислородные соединения Mе и их свойства

Гореть могут многие металлы. Но активные металлы, например магний, загораются при относительно низких температурах.

В воздухе металл горит. В атмосфере кислорода магний вспыхивает ослепительным белым пламенем. При горении магния выделяются ультрафиолетовые лучи. 
Продукт горения магния – белый порошкообразный оксид.  
2Mg + O2= 2MgO 
При горении магния выделяется большое количество теплоты, поэтому магний может сам себя разогреть до высоких температур. Для этого необходимо только достаточное количество металла. Свойство магния ярко гореть используется в пиротехнике. Измельченный магний - составляющая смесей для фейерверков. Вспышку магния использовали фотографы 100 лет назад для освещения моделей. Осветительный прибор представлял собой полочку с зеркалом-отражателем, на полочке сгорал порошок магния. Пока магний горел - открывали затвор. Ярко освещенный объект получался контрастным на фотографии. Магний - очень легкий металл, в 1,5 раза легче алюминия и в 4,5 раза легче железа.

Кислоты (основания) Mе

Гидроксиды Э(ОН)2 — белые кристаллические вещества, в воде растворимы

хуже, чем гидроксиды щелочных металлов. Мg(ОН)2 — основание средней силы, Са(ОН)2 — сильное основание. При переходе от Мg (ОН)2, к Са(ОН)2, растет термическая устойчивость гидроксидов, растворимость в воде и основные свойства. Оба гидроксида хорошо растворяются в кислотах. Весьма слабые кислотные свойства Мg(ОН)2, проявляет лишь при длительном кипячении его осадка в 65%-ном растворе щелочи:

Мg(ОН)2 + 2КОН = К2[Мg(ОН)4].

В этом отношении он несколько похож на бериллий. Мg(ОН)2 хорошо растворяется в растворах солей аммония, что весьма важно для аналитической химии. Движущей силой этого растворения является образование малодиссоциирующего гидрата МН3 • Н20:

Мg(ОН)2+ 2NH4Cl = МgСl2 + 2NH3•Н20

Соли Mе и их свойства

Сульфат МgS04*7Н20 может быть представлен как сверхкомплексное соединение [Мg(Н20)6]304*Н20. С сульфатами щелочных металлов он образует двойные соли типа шёнита Ме2S04*МgS04*6Н20. В отличие от бериллия для Мg (+2) характерно к.ч. 6, а сами комплексы магния менее стойки и разнообразны. Зато магний дает значительно больше комплексов с органическими лигандами.

Применение в промышленности Mе 
Магний является самым легким конструкционным материалом, используемым в промышленных масштабах. Плотность магния (1,7 г/см3) равна менее чем двум третьим плотности алюминия. Магниевые сплавы весят в четыре раза меньше стали. Кроме всего прочего, магний отлично поддается обработке, а также может быть отлит или переделан любыми из стандартных методов металлообработки (штамповка, прокатка, волочение, ковка, клепка, сварка, пайка). Именно поэтому основной областью применения магния является использование металла в качестве легкого конструкционного материала. Наиболее широко применяют сплавы магния с марганцем, алюминием и цинком. Каждый компонент данного ряда вносит собственный вклад в обобщающие свойства сплава: цинк и алюминий способны сделать сплав более прочным, марганец повышает антикоррозионные свойства сплава. Магний делает сплав легким, детали, выполненные из магниевого сплава, на 20%-30% легче, чем алюминиевые и на 50%-75% легче, чем чугунные и стальные детали. Сплавы данного элемента все чаще начинают использоваться в автомобилестроении, полиграфии, текстильной промышленности. Сплавы на основе магния, как правило, содержат долю магния более 90%, кроме того от 2% до 9% алюминия, от 1% до 3% цинка и от 0,2% до 1% марганца. При высокой температуре (примерно до 450° С) заметно улучшается прочность сплава в процессе сплавления с редкоземельными металлами (к примеру, неодимом и празеодимом) либо торием. Данные сплавы могут использоваться в производстве корпусов автомобильных двигателей, шасси и фюзеляжей самолетов. Магний применяется не в одной лишь авиации, его используют и в изготовления лестниц, грузовых платформ, мостков в доках, подъемников и транспортеров, в производстве оптического и фотографического оборудования. Магниевые сплавы находят широкое применение в самолетостроении. В далеком 1935 году в Советском Союзе был сконструирован самолет «Серго Орджоникидзе», который почти на 80% состоял из магниевых сплавов. Данный самолет успешно выдерживал все испытания, он долгое время эксплуатировался в тяжких условиях. Ядерные реакторы, ракеты, детали моторов, баки для масла и бензина, корпуса легковых автомобилей, вагонов, автобусов, колеса, отбойные молотки, маслопомпы, пневмобуры, кино- и фотоаппараты, бинокли — все это краткий перечень деталей, приборов и узлов, при изготовлении которых используются магниевые сплавы.

Информация о работе Нахождение Mg в природе