Автор работы: Пользователь скрыл имя, 10 Февраля 2013 в 09:33, лекция
Нефть -- горючее полезное ископаемое, состоящее из сложной смеси, главным образом предельных углеводородов, с примесью органических кислородных, сернистых и азотистых соединений. Обычно нефть представляет собой маслянистую жидкость красно-коричневого, иногда почти черного цвета, но встречается слабоокрашенная в желто-зеленый цвет и даже бесцветная нефть.
Нефть -- горючее полезное ископаемое, состоящее из сложной смеси, главным образом предельных углеводородов, с примесью органических кислородных, сернистых и азотистых соединений. Обычно нефть представляет собой маслянистую жидкость красно-коричневого, иногда почти черного цвета, но встречается слабоокрашенная в желто-зеленый цвет и даже бесцветная нефть.
3.1. СОСТАВ И
ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА
Природные газы – это вещества, которые при нормальных условиях находятся в газообразном состоянии.
Углеводородные газы, в зависимости от их состава, давления и температуры могут находиться в залежи в различных состояниях – газообразном, жидком или в виде газожидкостных смесей. Газ обычно расположен в газовой шапке в повышенной части пласта.
Если газовая шапка в нефтяной залежи отсутствует (это возможно при высоком пластовом давлении или особом строении залежи), то весь газ залежи растворён в нефти. Этот газ будет, по мере снижения давления, выделятся из нефти при разработке месторождения и будет называться попутным газом.
В пластовых условиях все нефти содержат растворённый газ. Чем выше давление в пласте, тем больше растворённого газа в нефти.
Давление, при котором весь имеющийся в залежи газ растворён в нефти, называется давлением насыщения. Оно определяется составом нефти и газа и температурой в пласте.
От давления насыщения зависит газовый фактор – количество газа (в м3), содержащееся в 1 тонне нефти.
Газы могут находиться в пласте в трёх состояниях: свободном, сорбированном, растворённом.
3.1.1. Состав природных газов
Природные газы, добываемые из газовых, газоконденсатных и нефтяных месторождений, состоят из углеводородов (СН4 – С4Н10, для Н.У. и С.У.), а также неуглеводородных компонентов (H2S, N2, CO, CO2, Ar, H2, He).
При нормальных и стандартных условиях в газообразном состоянии существуют только углеводороды С1–С4. Углеводороды С5 и выше в нормальных условиях находятся в жидком состоянии.
Газы, добываемые из чисто газовых месторождений, содержат более 95% метана (табл. 3.1).
Химический состав газа газовых месторождений, об. %
Таблица 3.1
Месторождение |
СН4 |
С2Н6 |
С3Н8 |
С4Н10 |
С5Н12 |
N2 |
СО2 |
Относит. плотность |
Северо-Ставропольское |
98,9 |
0,29 |
0,16 |
0,05 |
– |
0,4 |
0,2 |
0,56 |
Уренгойское |
98,84 |
0,1 |
0,03 |
0,02 |
0,01 |
1,7 |
0,3 |
0,56 |
Шатлыкское |
95,58 |
1,99 |
0,35 |
0,1 |
0,05 |
0,78 |
1,15 |
0,58 |
Медвежье |
98,78 |
0,1 |
0,02 |
– |
– |
1,0 |
0,1 |
0,56 |
Содержание метана на газоконденсатных месторождениях – 75-95% (табл. 3.2).
Химический состав газа газоконденсатных месторождений, об. %
Таблица 3.2
Месторождение |
СН4 |
С2Н6 |
С3Н8 |
С4Н10 |
С5Н12 |
N2 |
СО2 |
Относит. плотность |
Вуктыльское |
74,80 |
7,70 |
3,90 |
1,80 |
6,40 |
4,30 |
0,10 |
0,882 |
Оренбургское |
84,00 |
5,00 |
1,60 |
0,70 |
1,80 |
3,5 |
0,5 |
0,680 |
Ямбургское |
89,67 |
4,39 |
1,64 |
0,74 |
2,36 |
0,26 |
0,94 |
0,713 |
Уренгойское |
88,28 |
5,29 |
2,42 |
1,00 |
2,52 |
0,48 |
0,01 |
0,707 |
Газы, добываемые вместе с нефтью (попутный газ) представляют собой смесь метана, этана, пропан-бутановой фракции (сжиженного газа) и газового бензина. Содержание метана – около 35-85%. Содержание тяжёлых углеводородов в попутном газе 20-40% , реже – до 60% (табл. 3.3).
Химический состав газа нефтяных месторождений (попутного газа), об. %
Таблица 3.3
Месторождение |
СН4 |
С2Н6 |
С3Н8 |
С4Н10 |
С5Н12 |
N2 |
СО2 |
Относит. плотность |
Бавлинское |
35,0 |
20,7 |
19,9 |
9,8 |
5,8 |
8,4 |
0,4 |
1,181 |
Ромашкинское |
3838 |
19,1 |
17,8 |
8,0 |
6,8 |
8,0 |
1,5 |
1,125 |
Самотлорское |
53,4 |
7,2 |
15,1 |
8,3 |
6,3 |
9,6 |
0,1 |
1,010 |
Узеньское |
50,2 |
20,2 |
16,8 |
7,7 |
3,0 |
2,3 |
– |
1,010 |
Тяжёлым нефтям свойственны сухие нефтяные газы (с преобладанием метана).
Под тяжелыми УВ понимаются углеводороды от этана (С2Н6) и выше.
Лёгким нефтям свойственны жирные газы:
3.1.2. Физико-химические свойства углеводородных газов
Нефтяной газ при нормальных условиях содержит неполярные углеводороды (смесь компонентов от С1 до С4), и с точки зрения физики к ним можно применять законы для идеальных систем. С точки зрения математики – это аддитивная система. Следовательно, к нему при нормальных условиях применимы аддитивные методы расчётов физико-химических и технологических параметров (Псмеси):
где gi – весовая доля;
Ni – мольная доля;
Vi – объёмная доля;
Пi – параметр i-го компонента.
Плотность смеси газов рассчитывается следующим образом:
При нормальных условиях плотность газа rг = Mi / 22,414.
Нефтяной газ представлен в виде смеси углеводородов, поэтому для оценки его физико-химических свойств необходимо знать, как выражается состав смеси.
Массовая доля (gi) – отношение массы i-го компонента, содержащегося в системе к общей массе системы:
Молярная (мольная) доля (Ni) – отношение числа молей i-го компонента к общему числу молей в системе:
где mi – масса i-го компонента;
Мi – молекулярный вес.
Объёмная доля (Vi) – доля, которую занимает компонент в объёме системы.
Для идеального газа соблюдается соотношение Vi = Ni .
Молекулярная масса смеси рассчитывается следующим образом:
Относительная плотность газа по воздуху:
Для нормальных условий ρвозд » 1,293; для стандартных условий ρвозд » 1,205.
Если плотность газа задана при атмосферном давлении (0,1013 МПа), то пересчёт её на другое давление (при той же температуре) для идеального газа производится по формуле:
Смеси идеальных газов характеризуются аддитивностью парциальных давлений и парциальных объёмов.
Для идеальных газов давление смеси равно сумме парциальных давлений компонентов (закон Дальтона):
где Р – давление смеси газов;
рi – парциальное давление i-го компонента в смеси,
или
Т. е. парциальное давление газа в смеси равно произведению его молярной доли в смеси на общее давление смеси газов.
Аддитивность парциальных
где V – объём смеси газов;
Vi – объём i-го компонента в смеси.
или
Для определения многих физических свойств природных газов используется уравнение состояния.
Уравнением состояния
Состояние газа при стандартных
условиях характеризуется уравнением
состояния Менделеева-
где Р – абсолютное давление, Па;
V – объём, м3;
Q – количество вещества, кмоль;
Т – абсолютная температура, К;
R – универсальная газовая постоянная Па×м3/(кмоль×град).
У этого уравнения есть свои граничные условия. Оно справедливо для идеальных газов при нормальном (1 атм.) и близких к нормальному давлениях (10-12 атм.).
При повышенном давлении газ сжимается. За счёт направленности связи С-Н происходит перераспределение электронной плотности, и молекулы газов начинают притягиваться друг к другу.
Для учёта этого взаимодействия в уравнение (3.18) вводится коэффициент сверхсжимаемости z, предложенный голландским физиком Ван-дер-Ваальсом, учитывающий отклонения реального газа от идеального состояния:
где Q – количество вещества, моль.
Физический смысл коэффициента сверхсжимаемости заключается в расширении граничных условий уравнения Клайперона-Менделеева для высоких давлений.
Коэффициент z зависит от давления и температуры, природы газа (критических давлений и температуры).
Критическое давление – давление, при котором газообразный углеводород переходит в жидкое состояние.
Критическая температура – температура, при которой жидкий углеводород переходит в газообразное состояние.
Приведёнными параметрами индивидуальных компонентов называются безразмерные величины, показывающие, во сколько раз действительные параметры состояния газа отклоняются от критических:
z = f ( Тприв, Рприв) (3.22)
Существуют графики, эмпирические формулы и зависимости для оценки коэффициента сверхсжимаемости от приведенных давлений и приведенных температур.
Зная коэффициент
Объёмный коэффициент газа используется при пересчёте объёма газа в нормальных условиях на пластовые условия и наоборот (например, при подсчёте запасов):
Вязкость газа – свойство газа оказывать сопротивление перемещению одной части газа относительно другой.
Различают динамическую вязкость m и кинематическую вязкость n. Кинематическая вязкость учитывает влияние силы тяжести.
Динамическая вязкость зависит от средней длины пробега молекул газа и от средней скорости движения молекул газа:
где r – плотность газа;
– средняя длина пробега молекулы;
– средняя скорость молекул.
Кинематическая вязкость природного газа при нормальных условиях невелика и не превышает 0,01 сантипуаза.
Динамическая вязкость
газа увеличивается с ростом температуры
(при повышении температуры
3.1.3. Растворимость газов в нефти и воде
От количества растворённого в пластовой нефти газа зависят все её важнейшие свойства: вязкость, сжимаемость, термическое расширение, плотность и т.д.
Распределение компонентов нефтяного газа между жидкой и газообразной фазами определяется закономерностями процессов растворения. Способность газа растворятся в нефти и воде имеет большое значение на всех этапах разработки месторождений от добычи нефти до процессов подготовки и транспортировки.