Автор работы: Пользователь скрыл имя, 19 Октября 2014 в 10:48, курсовая работа
Углеводороды с открытой цепью, содержащие только простые ковалентные связи, называют насыщенными углеводородами или парафинами, по номенклатуре ИЮПАК – алканами.
Основными источниками алканов служит нефть и сопутствующий ей природный газ. Природный газ содержит только более летучие алканы, т.е. алканы с низким молекулярным весом; в основном он состоит из метана и значительно меньших количеств этана, пропана и высших алканов.
1. Введение…………………………………………..………………………3
2. Алканы…………………………………………………………………….4
2.1. Строение алканов……..……………………………………………4
2.2. Гомологический ряд алканов……..……………………………….4
2.3. Названия алканов……..……………………………………………6
2.3.1. Систематическая номенклатура ИЮПАК…………………….7
2.3.2. Рациональная номенклатура.......................................................7
2.4. Физические свойства алканов……………………………..............9
2.5. Получение ……………………………………………………….…9
3. Окисление………………………………………………………………..14
3.1. Характеристика некоторых окислителей………………………….15
3.2. Окисление алканов ………………………………………………….24
4. Заключение………………………………………………………………...28
5. Список используемой литературы……………………………………….29
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»
Технологический институт
Кафедра общей и физической химии
КУРСОВАЯ РАБОТА
по дисциплине «Дополнительные главы органической химии»
на тему «Окисление алканов»
Выполнила : студент группы ХТМбзс-13
Давлетбаева Н.М.
Руководитель: к.х.н. доцент кафедры ОФХ
Котлова Л.И.
Тюмень 2014 г.
СОДЕРЖАНИЕ
3.1. Характеристика некоторых окислителей………………………….15
3.2. Окисление алканов ………………………………………………….24
4. Заключение……………………………………………………
5. Список используемой литературы……………………………………….29
Углеводороды с открытой цепью, содержащие только простые ковалентные связи, называют насыщенными углеводородами или парафинами, по номенклатуре ИЮПАК – алканами.
Основными источниками алканов служит нефть и сопутствующий ей природный газ. Природный газ содержит только более летучие алканы, т.е. алканы с низким молекулярным весом; в основном он состоит из метана и значительно меньших количеств этана, пропана и высших алканов.
Все нелетучие фракции используются в основном как топливо. Газовая фракция, как и природный газ, применяется в основном также как топливо. Бензин используется в двигателях внутреннего сгорания, работающих на летучем топливе, керосин – в тракторах и форсунках реактивных двигателей, а соляровое масло – в дизелях. Керосин и соляровое масло находят также применение как топливо.
Алканы являются не только простым и относительно дешевым топливом, но и исходным сырьем для крупнотоннажного производства. Полученные из нефти смеси алканов и других углеводородов применяются в качестве моторного топлива для двигателей внутреннего сгорания и реактивных двигателей.
Окисление алканов имеет большое значение в химической промышленности. Это окисление проводится с помощью катализаторов и приводит к разнообразным продуктам - спиртам, карбонильным соединениям, карбоновым кислотам, которые находят дальнейшее промышленное применение. Объектом исследования данной курсовой работы является один из классов органических веществ – алканы. Предметом- реакцию окисления парафинов. Таким образом, целью данной работы считается изучение механизма реакции окисления алканов.
Алканы это — ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой CnH2n+2.
Алканы являются насыщенными углеводородами и содержат максимально возможное число атомов водорода. Каждый атом углерода в молекулах алканов находится в состоянии sp3-гибридизации — все 4 гибридные орбитали атома С равны по форме и энергии, 4 электронных облака направлены в вершины тетраэдра под углами 109°28'.(Рис.1)
Рис.1
За счёт одинарных связей
между атомами С возможно
Алканы - это ряд соединений сходного строения, в котором каждый последующий член отличается от предыдущего на постоянную группу атомов (-CH2-).
Такая последовательность соединений называется гомологическим рядом (от греч. homolog - сходный), отдельные члены этого ряда – гомологами, а группа атомов, на которую различаются соседние гомологи, –гомологической разностью.
Гомологический ряд алканов легко составить, добавляя в цепь каждый раз группы -СН2- :
CH4 или Н-СН2-Н – первый член гомологического ряда – метан (содержит 1 атом C);
CH3-CH3 или Н-СН2-СН2-Н – 2-й гомолог – этан (2 атома С);
CH3-CH2-CH3 или Н-СН2-СН2-СН2
CH3-CH2-CH2-CH3 или Н-СН2-СН2-
Изомерия алканов
Изомерия – явление существования соединений, которые имеют одинаковый состав (одинаковую молекулярную формулу), но разное строение. Такие соединения называются изомерами.
Различия в порядке соединения атомов
в молекулах (т.е. в химическом строении)
приводят к структурной изомерии. Строение
структурных изомеров отражается структурными
формулами. В ряду алканов структурная
изомерия проявляется при содержании
в цепи 4-х и более атомов углерода, т.е.
начиная с бутана С4Н10.
Если в молекулах одинакового состава
и одинакового химического строения возможно
различное взаимное расположение атомов
в пространстве, то наблюдается пространственная
изомерия (стереоизомерия). В этом случае
использование структурных формул недостаточно
и следует применять модели молекул или
пространственные (стереохимические)
формулы.
Алканы, начиная с этана С2Н6, существуют в различных пространственных формах, обусловленных внутримолекулярным вращением по s-связям С–С, и проявляют так называемую поворотную изомерию.
Кроме того, при наличии в молекуле 7-ми и более углеродных атомов, возможен еще один вид пространственной изомерии, когда два изомера относятся друг к другу как предмет и его зеркальное изображение (подобно тому, как левая рука относится к правой). Такие различия в строении молекул называют зеркальной, или оптической, изомерией.
Слово «алкан» того же происхождения, что и «алкоголь» . Устаревший термин «парафин» произошел от латинских parum - мало, незначительно и affinis - родственный; парафины обладают малой реакционной способностью по отношению к большинству химических реагентов. Многие парафины являются гомологами; в гомологическом ряду алканов каждый последующий член отличается от предыдущего на одну метиленовую группу СН2. Термин происходит от греческого homologos - соответственный, подобный.
Номенклатурные (от лат. nomenclatura -
роспись имен) названия алканов строятся
по определенным правилам, которые не
всегда однозначны. Так, если в молекуле
алкана ecть различные заместители, то
в названии алкана они перечисляются в
алфавитном порядке. Однако в разных языках
этот порядок способен различаться. Например,
углеводород СН3-СН(СН3)-СН(С2Н5)-СН2-СН2-
В соответствии с названием углеводорода называются и алкильные радикалы: метил (СН3-), этил (С2Н5-), изопропил (СН3)2СН-, втор-бутил С2Н5-СН(СН3)-, трет-бутил (СН3)3С- и т.д. Алкильные радикалы входят как целое в состав многих органических соединений; в свободном состоянии эти частицы с неспаренным электроном исключительно активны.
Некоторые изомеры алканов
имеют и тривиальные названия, например,
изобутан (2-метилпропан), изооктан (2,2,4-триметилпентан),
неопентан (2,3-диметилпропан), сквалан
(2,6,10,15,19,23-
По номенклатуре ИЮПАК названия алканов образуются при помощи суффикса -ан путём добавления к соответствующему корню от названия углеводорода. Выбирается наиболее длинная неразветвлённая углеводородная цепь так, чтобы у наибольшего числа заместителей был минимальный номер в цепи. В названии соединения цифрой указывают номер углеродного атома, при котором находится замещающий радикал, затем название радикала и название главной цепи. Если радикалы повторяются, то перечисляют цифры, указывающие их положение, а число одинаковых радикалов указывают приставками ди-, три-, тетра-. Если радикалы неодинаковые, то их названия перечисляются в алфавитном порядке.
Выбирается один из атомов углеродной цепи, он считается замещённым метаном и относительно него строится название «алкил1алкил2алкил3а»
В таблице 1 приведены названия первых пяти углеводородов, их радикалов, возможных изомеров и соответствующие им формулы.
|
Таблица 1.
Алканы - бесцветные вещества, нерастворимые в воде. В обычных условиях они химически инертны, так как все связи в их молекулах образованы с участием sp3-гибридных орбиталей атома углерода и являются очень прочными. В реакции присоединения алканы не вступают: все связи атомов углерода полностью насыщены.
· Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи
· При нормальных условиях неразветвлённые алканы с CH4 до C4H10 -- газы; с C5H12 до C13H28 -- жидкости; после C14H30 -- твёрдые тела.
· Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным. Так, например, при 20 °C н-пентан -- жидкость, а неопентан -- газ.
· газообразные алканы горят бесцветным или бледно-голубым пламенем с выделением большого количества тепла.
Обычно методы получения определенных органических соединений делят на две группы: промышленные и лабораторные. Эти методы можно охарактеризовать следующим образом, хотя, конечно, имеется много исключений.
В результате синтеза в промышленных масштабах обычно получают большое количество нужного материала по низкой цене. В лаборатории требуется синтезировать несколько сот граммов или даже несколько граммов вещества или еще меньше; цена обычно имеет меньшее значение, чем время, затраченное на синтез.
В промышленности часто можно использовать не только чистое соединение, но и требуемое соединение в смеси с другими; даже когда требуется одно соединение, может быть экономически выгодно выделять его из смеси, особенно если одновременно можно выделить и другие соединения. В лаборатории химику почти всегда требуется индивидуальное чистое соединение. Выделение чистого вещества из смеси родственных соединений требует много времени, и часто не удается достигнуть нужной степени чистоты. Кроме того, сырье для определенного синтеза может быть труднодоступным веществом из предыдущего синтеза или даже серии синтезов, и, следовательно, химики заинтересованы в наиболее полном превращении его в нужное соединение. В промышленном масштабе, если нельзя выделить соединение из природного сырья, его можно синтезировать наряду с родственными соединениями в результате какой-то экономичной реакции. В лаборатории, если возможно, выбирают реакцию, в которой образуется одно соединение с хорошим выходом.
В промышленности часто бывает выгодна разработка процесса и проектирование аппаратуры, которые можно использовать для синтеза только одного представителя класса. В лаборатории химик редко заинтересован в многократном получении одного и того же соединения и, следовательно, использует методы, которые применимы ко многим или ко всем представителям определенного класса.