Основы органической химии

Автор работы: Пользователь скрыл имя, 17 Ноября 2014 в 13:21, контрольная работа

Описание работы

Многообразие органических соединений, их свойств и превращений объясняет теория химического строения (А. М. Бутлеров, 1861–1864).
Химическое строение – это определенная последовательность расположения атомов в молекуле. Строение молекулы органического соединения изображается структурной формулой (развернутой или сокращенной), в которой символы связанных атомов соединяются валентной чертой, например, для этанола С2Н5ОН:
развернутая структурная формула

Содержание работы

1. Теория строения, многообразие, классификация и номенклатура органических соединений. Типы химических реакций
2. Изомерия. Типы изомерии.
3. Химическая связь. Типы химической связи в органических соединениях.
4. Химические свойства основных классов углеводородов
5. Полимеры и олигомеры

Файлы: 1 файл

срс 1химия.docx

— 256.66 Кб (Скачать файл)

 

 

 

 

 

СРС №1

Тема: Основы органической химии

Для студентов по направлению подготовки

034300.62 Физическая  культура

Профиль подготовки

Физкультурное образование, Спортивная тренировка

в избранном виде спорта,Спортивный менеджмент

034400.62 Адаптивная физическая культура

 

 

Выполнил: студент  111 группы Моторкин Сергей 
Преподователь: Доцент,д.б.н. В.А.Лиходеева

 

 

 

 

ПЛАН

1. Теория строения, многообразие, классификация и номенклатура органических соединений. Типы химических реакций

2. Изомерия. Типы изомерии.

3. Химическая связь. Типы  химической связи в органических  соединениях.

4. Химические свойства  основных классов углеводородов

5. Полимеры и олигомеры

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Содержание

1

Теория строения, многообразие, классификация и номенклатура органических соединений. Типы химических реакций

4

2

Изомерия. Типы изомерии.

11

3

Химическая связь. Типы химической связи в органических соединениях.

14

4

Химические свойства основных классов углеводородов

19

5

Полимеры и олигомеры

21

 

Используемая литература

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Теория строения, многообразие, классификация и номенклатура органических соединений. Типы химических реакций

Многообразие органических соединений, их свойств и превращений объясняет теория химического строения (А. М. Бутлеров, 1861–1864). 
Химическое строение – это определенная последовательность расположения атомов в молекуле. Строение молекулы органического соединения изображается структурной формулой (развернутой или сокращенной), в которой символы связанных атомов соединяются валентной чертой, например, для этанола С2Н5ОН:

развернутая структурная формула

 
 

сокращенная структурная формула

СН3—СН2—ОН

Часто одинарные связи вообще не указывают: СН3СН2ОН

По строению различают ациклические и циклические органические соединения.

Ациклические соединения характеризуются открытой цепью атомов углерода:

а) насыщенные соединения (с одинарными связями С – С)

 

б) ненасыщенные соединения (с кратными связями C=C и C?C) 
 

Ациклические соединения могут содержать как прямую цепь атомов углерода, так и разветвленную. Различают атомы углерода:

первичный, соединен с одним другим атомом углерода;

вторичный, соединен с двумя атомами углерода;

третичный, соединен с тремя атомами углерода;

четвертичный, соединен с четырьмя атомами углерода. 
Прямая углеродная цепь состоит только из первичных и вторичных атомов углерода, разветвленная цепь содержит также третичные и четвертичные атомы. 
Пример:

 
 

1, 2', 4', 4", 6 – первичные  атомы

2 – третичный атом

3, 5 – вторичные атомы

4 – четвертичный атом

Циклические соединения имеют замкнутую в цикл цепь атомов углерода: 
а) алициклические соединения (циклические соединения неароматического характера)

 
 

б) ароматические соединения (производные бензола)

 
 

Химические свойства органических соединений зависят не только от состава вещества (числа атомов элементов), но и от его химического строения. Один и тот же состав может соответствовать нескольким органическим соединениям с разным строением и, соответственно, разными свойствами; это явление называется изомерией:

 
 

Такие вещества называют структурными изомерами или изомерами строения.

Органические соединения образованы главным образом ковалентными связями. Если ковалентная связь полярна, электронная плотность оказывается смещенной в сторону более электроотрицательного атома. Вследствие этого на атомах появляются частичные заряды – положительный (?+) и отрицательный (-?):

 
 

Химические реакции, типичные для органических соединений, можно классифицировать по различным признакам: 
1) по типу химического превращения: 
– реакции замещения, сопровождающиеся образованием новых ковалентных связей при замещении одного атома (или группы атомов) на другие атомы или группы атомов: 
 
– реакции присоединения (синтез), сопровождающиеся образованием новых о-связей за счет разрыва ?-связи: 

– реакции разложения, сопровождающиеся образованием новых, более простых по составу молекул: 
 

2) по способу разрыва связи:

– реакции с образованием радикалов, сопровождающиеся симметричным разрывом связи между атомами элементов с одинаковой электроотрицательностью (гемолитический разрыв):

 
 

– реакции с образованием ионов, сопровождающиеся несимметричным разрывом связи (гетеролитический разрыв):

 
 

Все органические соединения делятся на классы. Принадлежность соединения к тому или иному классу определяется наличием в его составе функциональных групп – групп атомов, обусловливающих характерные химические свойства данного класса соединений. К функциональным группам принадлежат: 
 
Углеводороды не имеют функциональных групп. 
Группа атомов органического соединения, которая во многих реакциях может переходить в молекулу продукта не изменяясь, называется радикалом и обозначается R, например метильный радикал – СН3. 
Углеводороды (состоят только из атомов С и Н) и их производные образуют гомологические ряды, члены которых имеют сходные строение и свойства; они отличаются друг от друга на одну или несколько групп СН2(гомологическая разность).

Классификация органических соединений представлена в табл. 8. 
 

2. Изомерия. Типы  изомерии.

 

 Что такое  изомерия

Рассмотренные нами ранее виды формул, описывающих органические вещества, показывают, что одной молекулярной может соответствовать несколько разных структурных формул.

Например, молекулярной формуле C2H6O соответствуют два вещества с разными структурными формулами – этиловый спирт и диметиловый эфир. Рис. 1.

 

 Этиловый спирт – жидкость, которая реагирует с металлическим натрием с выделением водорода, кипит при +78,50С. При тех же условиях диметиловый эфир – газ, не реагирующий с натрием, кипит при -230С.

Эти вещества отличаются своим строением – разным веществам соответствует одинаковая молекулярная формула.

 

 

 

 

 

 

 

 

 

 

 

Рис. 1. Межклассовая изомерия

 

Явление существования веществ, имеющих одинаковый состав, но разное строение и поэтому разные свойства называют изомерией (от греческих слов «изос» – «равный» и «мерос» – «часть», «доля»).

Типы изомерии

Существуют разные типы изомерии.

Межклассовая изомерия

Структурная изомерия связана с разным порядком соединения атомов в молекуле.

Этанол и диметиловый эфир – структурные изомеры. Поскольку они относятся к разным классам органических соединений, такой вид структурной изомерии называется еще и межклассовой. Рис. 1.

 

 Изомерия  по углеродному скелету

Структурные изомеры могут быть и внутри одного класса соединений, например формуле C5H12 соответствуют три разных углеводорода. Это изомерия углеродного скелета. Рис. 2.

Рис. 2 Примеры веществ – структурных изомеров

 Изомерия  положения

Существуют структурные изомеры с одинаковым углеродным скелетом, которые отличаются положением кратных связей (двойных и тройных) или атомов, замещающих водород. Этот вид структурной изомерии называется изомерией положения.

 

 

 

 

 

 

 

 

 

Рис. 3. Структурная изомерия положения

 

 

 Пространственная  изомерия

В молекулах, содержащих только одинарные связи, при комнатной температуре возможно почти свободное вращение фрагментов молекулы вокруг связей, и, например, все изображения формул 1,2-дихлорэтана равноценны. Рис. 4

 

 
 
 
 
 
 
 
 
 
Рис. 4. Положение атомов хлора вокруг одинарной связи

Если же вращение затруднено, например, в циклической молекуле или при двойной связи, то возникает геометрическая или цис-транс изомерия. В цис-изомерах заместители находятся по одну сторону плоскости цикла или двойной связи, в транс-изомерах – по разные стороны.

Цис-транс изомеры существуют в том случае, когда с атомом углерода связаны два разных заместителя. Рис. 5.

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 5. Цис- и транс- изомеры

 

 Оптическая  изомерия

 

Еще один тип изомерии возникает в связи с тем, что атом углерода с четырьмя одинарными связями образует со своими заместителями пространственную структуру – тетраэдр. Если в молекуле есть хотя бы один углеродный атом, связанный с четырьмя разными заместителями, возникает оптическая изомерия. Такие молекулы не совпадают со своим зеркальным изображением. Это свойство называется хиральностью – от греческого сhier – «рука». Рис. 6. Оптическая изомерия характерна для многих молекул, входящих в состав живых организмов.

 


 

Рис. 6. Примеры оптических изомеров

 

Оптическая изомерия называется также энантиомерией (от греческого enantios – «противоположный» и meros – «часть»), а оптические изомеры – энантиомерами. Энантиомеры оптически активны, они вращают плоскость поляризации света на один и тот же угол, но в противоположные стороны: d-, или (+)-изомер, – вправо, l-, или (–)-изомер, – влево. Смесь равных количеств энантиомеров, называемая рацематом, оптически недеятельна и обозначается символом d,l- или (±).

 

 

3. Химическая связь. Типы химической связи в органических соединениях.

Химические частицы, образованные из двух или нескольких атомов, называются молекулами (реальными или условными формульными единицами многоатомных веществ). Атомы в молекулах химически связаны.

Под химической связью понимают электрические силы притяжения, удерживающие частицы друг около друга. Каждая химическая связь в структурных формулах представляется валентной чертой, например: 
H – H (связь между двумя атомами водорода); 
H3N – Н+ (связь между атомом азота молекулы аммиака и катионом водорода); 
(К+) – (I-) (связь между катионом калия и иодид-ионом).

Химическая связь образуется парой электронов (•), которая в электронных формулах сложных частиц (молекул, сложных ионов) обычно заменяется валентной чертой, в отличие от собственных, неподеленных электронных пар атомов, например:

 
 
Химическая связь называется ковалентной, если она образована путем обобществления пары электронов обоими атомами. 
В молекуле F2 оба атома фтора имеют одинаковую электроотрицательность, следовательно, обладание электронной парой для них одинаково. Такую химическую связь называют неполярной, так как у каждого атома фтора электронная плотность одинакова и в электронной формуле молекулы может быть условно разделена между ними поровну: 

Информация о работе Основы органической химии