Автор работы: Пользователь скрыл имя, 15 Мая 2014 в 21:28, реферат
Нуклеиновые кислоты - это биополимеры, макромолекулы которых состоят из многократно повторяющихся звеньев - нуклеотидов. Поэтому их называют также полинуклеотидами. Важнейшей характеристикой нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида - структурного звена нуклеиновых кислот - входят три составные части:
• азотистое основание - пиримидиновое или пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов
1. Состав нуклеиновых кислот
1.1. Состав ДНК
1.2. Состав РНК
2. Макромолекулярная структура ДНК
3. Выделение дезоксирибонуклеиновых кислот
4. Выделение рибонуклеиновых кислот
5. Природа межнуклеотидных связей
5.1. Межнуклеотидная связь в ДНК
5.2. Межнуклеотидная связь в РНК
6. Значение нуклеиновых кислот
7. Список литературы
Данные щелочного гидролиза ограничили количество возможных для РНК типов межнуклеотидных связей, но не прояснили вопроса о том, как построен этот полимер.
Более точные сведения о типе межнуклеотидной связи в РНК, как и в случае ДНК, были получены с помощью ферментативного гидролиза.
Гидролиз РНК с использованием ФДЭ змеиного яда, протекающий до рибонуклеозид-5'-фосфатов, подтвердил уже прямым путем предположение об участии 5'-гидроксильных групп в образовании фосфодиэфирной связи между мономерными звеньями. Позднее это было окончательно установлено в результате открытия фосфоролиза РНК в присутствии фермента полинуклеотидфосфорилазы (ПНФаза), приводящего к образованию рибонуклеозид-5'-пирофосфатов:
Таким образом, оставалось выяснить природу второй гидроксильной группы, участвующей в образовании межнуклеотидной связи. Частично решить эту задачу помог еще один фермент, который использовался для направленного расщепления РНК, — пиримидиловая рибонуклеаза (РНаза).
Ранее было показано, что этот фермент
расщепляет только алкиловые эфиры пиримидиновых
рибонуклеозид-3'-фосфатов до рибонук-леозид-3'-фосфатов
(через промежуточный рибонуклеозид-2',З'-
6. Значение нуклеиновых кислот
Значение нуклеиновых кислот очень велико. Особенности их химического строения обеспечивают возможность ранения, переноса в цитоплазму и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой клетке. Белки обусловливают большинство свойств и признаков клеток. Понятно поэтому, что стабильность структуры нуклеиновых кислот - важнейшее условие нормальной жизнедеятельности клеток и организма в целом. Любые изменения строения нуклеиновых кислот влекут за собой изменения структуры клеток или активности физиологических процессов в них, влияя таким образом на жизнеспособность.
Существует два типа нуклеиновых кислот: ДНК и РНК. ДНК (дезоксирибонуклеиновая кислота) - биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин(А) или тимин (Т), цитозин (Ц) или гуанин (Г); пятиатомный сахар пентозу - дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов. В каждой цепи нуклеотиды соединяются путем образования ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты последующего нуклеотида. Объединяются две цепи в одну молекулу при помощи водородных связей, возникающих между азотистыми основаниями, входящими в состав нуклеотидов, образующих разные цепи. Количество таких связей между разными азотистыми основаниями неодинаково и вследствие этого они могут соединяться только попарно: азотистое основание А одной цепи полинуклеотидов всегда связано двумя водородными связями с Т другой цепи, а Г - тремя водородными связями азотистым основанием Ц противоположной полинуклеотидной цепочки. Такая способность к избирательному соединению нуклеотидов называется комплиментарностью. Комплиментарное взаимодействие нуклеотидов приводит к образованию пар нуклеотидов. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар и остаток фосфорной кислоты.
РНК (рибонуклеиновая кислота), так же как ДНК, представляет собой полимер мономерами которого служат нуклеотиды. Азотистые основания те же самые, что входят в состав ДНК (аденин, гуанин, цетозин); четвертое - урацил - присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК содержат вместо дизоксирибозы другую пентозу - рибозу. В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого.
Известны двух- и одноцепочные молекулы рибонуклеиновой кислоты. Двухцепочные РНК служат для хранения и воспроизведения наследственной информации у некоторых вирусов, т.е. выполняют у них функции хромосом. Одноцепочные РНК осуществляют перенос информации о последовательности аминокислот в белках от хромосомы к месту их синтеза и участвуют в процессах синтеза.
Существует несколько видов одноцепочных РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Основную часть РНК цитоплазмы (80-90%) составляет рибосомальная РНК (рРНК). Она содержится в органоидах клетки, осуществляющих синтез белков, - рибосомах. Размеры молекул рРНК относительно невелики, они содержат от 3 до 5 тысяч нуклеотидов. Другой вид РНК - информационные (иРНК), переносящие от хромосом к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Транспортные РНК (рРНК) включают 76-85 нуклеотидов и выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, «узнают» (по принципу комплиментарности) участок иРНК, соответствующий переносимой аминокислоте, осуществляет аминокислоты на рибосоме.
Список литературы.