Автор работы: Пользователь скрыл имя, 24 Июня 2013 в 15:46, реферат
Учение о химической связи - центральная проблема современной химии. Число известных химических соединений близко к восьми миллионам, из них около трехсот тысяч неорганических, остальные соединения относятся к органическим веществам. И ежегодно в химических журналах описывается около двадцати тысяч новых соединений. Число же возможных реакций между известными веществами настолько велико, что вряд ли можно надеяться на описание их всех в обозримом будущем.
1.Природа химической связи
2.Типы химических связей
2.1 Ионная связь
2.2Основные свойства ковалентной связи
2.3 Металлическая связь
2.4 Водородная связь
Заключение
Литература
6. Кратность ковалентной связи или делоколизация связи -- Число связей, образующихся между атомами, называется кратностью (порядком) связи. С увеличением кратности (порядка) связи изменяется длина связи и ее энергия.
Существуют три вида ковалентной химической связи, отличающихся механизмом образования:
1. Простая ковалентная связь. Для ее образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными.
Если атомы, образующие простую ковалентную связь, одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществленной электронной парой. такая связь называется неполярной ковалентной связью. Такую связь имеют простые вещества, например О2; N2; C12.
Если атомы различны, то степень владения обобществленной парой электронов определяется различием в электроотрицательностях атомов. Атом с большей электроотрицательностью сильнее притягивает к себе пару электронов связи, и его истинный заряд становится отрицательным. Атом с меньшей электроотрицательностью приобретает, соответственно, такой же по величине положительный заряд. Такая ковалентная связь называется полярной.
2. Донорно-акцепторный механизм. Для образования этого вида ковалентной связи оба электрона предоставляет один из атомов -- донор. Второй из атомов, участвующий в образовании связи, называется акцептором. В образовавшейся молекуле формальный заряд донора увеличивается на единицу, а формальный заряд акцептора уменьшается на единицу.
3. Семиполярная связь. Этот вид ковалентной связи образуется между атомом, обладающим неподеленной парой электронов (азот, фосфор, сера, галогены и т. п.) и атомом с двумя неспаренными электронами (кислород, сера). Образование семиполярной связи протекает в два этапа:
· Окисление (перенос одного электрона) атома с НЭП атомом с двумя неспаренными электронами. В результате атом с НЭП превращается в катион-радикал (положительно заряженная частица с неспаренным электроном), а атом с двумя неспаренными электронами -- в анион-радикал (отрицательно заряженная частица с неспаренным электроном).
· Обобществление неспаренных электронов (как в случае простой ковалентной связи).
При образовании семиполярной связи атом с НЭП увеличивает свой формальный заряд на единицу, а атом с двумя неспаренными электронами понижает свой формальный заряд на единицу.
2.3 Металлическая связь
При обычных условиях металлы, за исключением ртути Hg, существуют в виде кристаллов. Взаимодействие, удерживающее атомы металлов в едином кристалле, называется металлической связью.
Природа металлической связи подобна ковалентной связи: оба типа связи основаны на обобществлении валентных электронов. Однако в атомах металлов количество таких электронов меньше количества вакантных орбиталей. Электроны слабо удерживаются ядром. Поэтому они могут переходить из одной орбитали в другую. Стремясь принять более устойчивое состояние, а это структура инертного газа, атомы металлов довольно легко отдают валентные электронные электроны, превращаясь в положительно заряжённые ионы. Внутри этой решётки находятся валентные электроны, которые не принадлежат конкретно какому-то атому. Благодаря малым размерам электроны более или менее свободно перемещаются по всему объёму кристаллической решётки, поэтому возникает большое число многоцентрированных орбиталей. Электроны на этих орбиталях обобщены сразу несколькими атомами.
Благодаря свободному перемещению электронов металлы обладают высокой электрической проводимостью и теплопроводностью.
По прочности металлическая связь меньше ковалентной связи в 3-4 раза. Металлическая связь не имеет определённой направленности в пространстве. Электроны сталкиваясь с ионами образуют нейтральные частицы, которые сразу теряют электроны: . Электронные газы отражают световые лучи.
В результате движения внутри решётки электроны способны переносить тепловую энергию от нагретых участков к не нагретым, этим объясняется теплопроводность.
Если приложить нагрузку к металлу, происходит деформация без разрушения решётки, металлам характерна ковкость, пластичность.
2.4 Водородная связь
Водородные связи могут образовываться между атомом водорода, связанным с атомом электроотрицательного элемента, и электроотрицательным элементом, имеющим свободную пару электронов(О,F,N). Водородная связь обусловлена электростатическим притяжением, которому способствуют малые размеры атома водорода, и отчасти, донорно-акцепторным взаимодействием. Водородная связь может быть межмолекулярной и внутримолекулярной. Связи 0-Н имеют выраженный полярный характер: Водородная связь гораздо более слабая, чем ионная или ковалентная, но более сильная, чем межмолекулярное взаимодействие. Водородные связи обуславливают некоторые физические свойства веществ (например, высокие температуры кипения). Особенно распространены водородные связи в молекулах белков, нуклеиновых кислот и других биологически важных соединений, обеспечивая им определенную пространственную структуру (организацию).
Различают водородную связь: межмолекулярную и внутримолекулярную.
Заключение
Химия - очень древняя наука. В химии необходимо отметить, прежде всего, существование особого «химического взгляда» на природу, который не может быть сведен к физическому, несмотря на все успехи физической химии в нынешнем столетии. То есть у химии давно были обнаружены качества некоторого особого типа. Так, согласно известному химику А.А. Бутакову, химические реакции «нельзя объяснить только действием сил электрического притяжения и отталкивания. Их действием объясняется лишь физическая сторона химического процесса. Химическая форма движения материи представляет собой процессы изменения частиц вещества, которые, в конечном счете, определяются действием периодического закона».
Химию традиционно принято
В химии могут быть выделены два основных структурных стержня, которые связаны с основными этапами развития этой науки и, кроме того, дают представление о взаимосвязях химии с другими естественными науками.
Первый из этих стержней - появление веществ с заданными (необходимыми) свойствами, что является в то же время и главной задачей химии. Эта задача объединяет практически все химические знания, которые представляются в виде теорий, законов, методов, технологических инструкций и т.п. Она ближе к истокам химии и к конкретному производству (металлургии, выделке кож и т.п.), которое и сформировало саму эту науку.
Вторым структурным стержнем химии является теоретическая задача исследования генезиса (происхождения) свойств вещества. Ее решение допускает различные уровни обобщения представлений о химических веществах.
В настоящее время выделяют четыре наиболее общих подхода:
1) исследование элементного и
молекулярного состава
2) исследование структуры
3) исследование
4) исследование природы
Одним из центральных понятий химии служит понятие «химическая связь». Химическая связь - взаимное притяжение атомов, приводящее к образованию молекул и кристаллов.
Известно, что атомы могут соединяться друг с другом с образованием как простых, так и сложных веществ. При этом образуются различного типа химические связи: ионная, ковалентная (неполярная и полярная), металлическая и водородная. Одно из наиболее существенных свойств атомов элементов, определяющих, какая связь образуется между ними - ионная или ковалентная, - это электроотрицательность, т.е. способность атомов в соединении притягивать к себе электроны.
Провести резкую границу между типами химических связей нельзя. В большинстве соединений тип химической связи оказывается промежуточным; например, сильнополярная ковалентная химическая связь близка к ионной связи.
Литература
1. Горелов, А.А. Концепции
2. Дикерсон, Р. Основные законы химии/ Р. Дикерсон, Г. Грей, Дж. Хейт: в 2 т. - М.: Мир, 1982.- 145с.
3. Зайцев, О. С. Задачи и вопросы по химии/ О.С. Зайцев.- М.: Химия, 1955.- 204с.
4. Коттон, Ф. Современная неорганическая химия / Ф. Коттон, Дж. Уилкинсон.- М.: Мир, 1969.-276с.
5. Краснов, К. С. Молекулы и
химическая связь/К.С. Краснов.
6. Кукушкин, Ю. П. Строение атома и химическая связь / Ю. П. Кукушкин, Е. И. Маслов. - М.:Химия, 2000.- 196с.
7. Любимова, Н. Б. Вопросы и
задачи по общей и
8. Минкин, В. И. Теория строения молекул / В. И. Минкин, Б. Я. Симкин, Р. М. Миняев.- Ростов на/Д: Феникс, 1999.- 243с.
9. Неорганическая химия / под
ред. Ю. Д. Третьякова: в 3 т.т.
1. Физико-химические основы
10. Соловьев, Ю. И. История химии / Ю. И. Соловьев, Д. Н. Трифонов, А. Н. Шамин М.: Просвещение, 1994.- 206с.
11. Спайс, Дж. Химическая связь и строение/ Дж. Спайс. М.: Мир, 1996.
12. Хорошавина С.Г Концепции