Вольфрам. Общие сведения

Автор работы: Пользователь скрыл имя, 05 Декабря 2013 в 12:01, реферат

Описание работы

Вольфрам входит в 4-ю группу периодической системы Менделеева. Его атомный номер 74, атомная масса 183,85. Природный вольфрам состоит из смеси пяти изотопов. Вольфрам имеет высокую стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в ангидрид вольфрамовой кислоты; в соляной, серной и плавиковой кислотах почти не растворим. В азотной кислоте и царской водке окисляется с поверхности. В смеси азотной плавиковой кислоты растворяется, образуя вольфрамовую кислоту.

Файлы: 1 файл

вольфрам.docx

— 32.96 Кб (Скачать файл)

Министерства образования  и науки Республики Казахстан

ВОСТОЧНО- КАЗАХСТАНСКИЙ ГОСУДАСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Д. Серикбаева

 

 

Факультет

Кафедра

 

 

 

 

 

 

Реферат

На тему: вольфрам

 

 

 

 

 

 

Выполнил: Тайлым К.Б

13- МГр-2

                                                                            Приняла: Чернеко З.И

 

 

 

Усть- Каменогорск

2013 г. 

1.общие сведения

 

Вольфрам входит в 4-ю группу периодической системы Менделеева. Его атомный номер 74, атомная масса 183,85. Природный вольфрам состоит  из смеси пяти изотопов

Массовые числа изотопов:                180      182        183        184        186

Содержание природной  смеси          0,13     26,31     14,28     30,64     28,64    

соответственно %

физические свойства вольфрама:

плотность 19,3 г/см3 твердость по Бринеллю 488 кг/мм температура  плавления 3410 оС, температура кипения 5930 оС,

электрическое сопротивление  при 20 оС 5,5.10 –  4, при 2700оС  90,4.10-4.

Валентность переменчивая от2 до6 наиболее устойчив 6-валентный вольфрам 3- и 2-валентные соединения вольфрама неустойчивы и практического значения не имеют. Радиус атома вольфрама- 0,141 нм.

Кларк вольфрама земной коры составляет по Виноградову, 0,00013 г/т. его  среднее содержание в горных породах, г/т: ультраосновных – 0,00001,  основных – 0,00007, средних – 0,00012, кислых – 0,00019.

Вольфрам является одним  из наиболее тяжелых и самым тугоплавким металлом. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 оС хорошо поддается ковке и может быть вытянут в тонкую нить.

Вольфрам имеет высокую  стойкость: при комнатной температуре  не изменяется на воздухе; при температуре  красного каления медленно окисляется в ангидрид вольфрамовой кислоты; в соляной, серной и плавиковой кислотах почти не растворим. В азотной кислоте и царской водке окисляется с поверхности. В смеси азотной плавиковой кислоты растворяется, образуя вольфрамовую кислоту. Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфроматы, перекисные соединения с общей формулой ME2WOX. Соединения с галогенами, серой и углеродом.

Общие мировые запасы вольфрама (без России) составляют около 7,5 млн. тонн, подтвержденные запасы около 4 млн. тонн. Наиболее крупными запасами обладают: Казахстан, Китай, Канада и США. Мировое  производство вольфрама составляет 18-20 тысяч тонн в год в т.ч. в Китае 10, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортеры вольфрама: Китай, Корея, Австрия. Главные импортеры: США, Япония, Германия Великобритания.

2.Области применения

 

Вольфрам находит широкое  применение в производстве сталей в  качестве легирующей добавки, в твердых  жаропрочных сплавах, в электротехнике, в производстве кислотоупорных и  специальных сплавов, в химической промышленности.

Долгое время более 60 % вольфрама использовалось в металлургии  для изготовления инструментальных, нержавеющих легированных и специальных  сталей. Присадка вольфрама к стали 1-20 % придает ей прочность, твердость, тугоплавкость, самозакаливаемость, кислотоупорность, повышает предел упругости и сопротивление растяжению. В настоящее время 55 % вольфрама в виде карбида идет на изготовление твердых сплавов, используемых для буровых коронок фельер для волочения проволоки, штампов, пружин, деталей пневматических инструментов, клапанов двигателей. Твердые сплавы, состоящие из вольфрама (3-15 %), хрома (25-35 %) и кобальта (45-65 %) с примесью 0,5-2,7 % углерода, применяются для покрытия сильно изнашивающихся деталей. Сплавы вольфрама медью и серебром являются хорошими контактными материалами и применяются в рабочих частях рубильников, выключателей и др. Сплав вольфрама (85-95 %) с никелем и медью обладающий высокой плотностью, используется в радиотерапии для устройства защитных экранов от гамма лучей.

Металлический вольфрам применяется  для изготовления нитей накаливания  в электролампах, электродов для  водородной сварки, заменяя платину, для нагревателей высокотемпературных  электропечей, работающих при температуре  свыше 3000 оС, термопар, роторов в гироскопах оптических пирометров для катодов рентгеновских трубок, электровакуумной аппаратуры, радиоприборов, выпрямителей и гальвонометров.

Соединения вольфрама  применяются в качестве красителей, для придания тканям огнестойкости  и водоустойчивости.

В США вольфрам используется (%) 68 – в производстве машин и  оборудования для металлообрабатывающей, горнодобывающей и строительной промышленности, 12 – для изготовления ламп и светильников, 12 – в электронной  промышленности и транспорте, 5 –  в химических отраслях и 3 – в  прочих областях.

3. основные минералы вольфрама

 

Известно 20 вольфрамовых минералов. Наиболее распространены минералы группы вольфрамита и шеелит, имеющие  промышленное значение. Реже встречается  сульфид вольфрамита – тунгстенсит (WS2), а также окисноподобные соединения – тунгстит, ферро - и купротунгстит, гидротунгстит. Довольно широко распространены псиломеланы, вады с высоким содержанием вольфрама.

В экзогенных условиях образуются минералы группы вульфенита: штольцит – bPbWO изоструктурный с шеелитом и его моноклинная разновидность-распит - aPbWO4 .

Группа вольфрамита представлена минералами изоморфного ряда MnWO4 и FeWO4.

4.оценка месторождений при поисках  и разведке

 На площадях получивших  в результате региональных исследований  оценку прогнозных ресурсов вольфрамого сырья по категориям Р3и Р2 проводят поисковые работы.

Целью поисков является выявление  месторождений вольфрама. Для этого  проводят изучение перспективной площади  с составлением прогнозных карт масштаба 1:50 000 на геолого-структурнофациальной основе, оконтуривание орудинения и установление факторов контролирующих его локализацию. Предварительно оценивают параметры рудных тел на поверхности и распространения оруденения на глубину залегания рудопродуцирующих магматических образований, размеры, форму, комплексность и продуктивность геохимических аномалий, содержание вольфрама и других сопутствующих элементов в рудных телах, степень окисленности руд, контуры зон, участков рудных пересечений с промышленными параметрами.

На участках развития потенциального оруденения оценивают прогнозные ресурсы по категории Р2 и частично – Р и при хороших геолого-экономических показателях переходят к оценочным работам. Целью оценочных работ является установления промышленного значения оруденения и выбор объектов под проектирование разведки и эксплуатации

Результатом оценочных работ  является наличие или отсутствие коммерческого открытия, которое  обосновывают:

Геологическая карта участка  в масштабах 1 : 5 000 – 1 : 2 000.

Структурно-литолого-фациальные карты с разрезами.

Планы, разрезы и проекции рудных тел.

Карта поисково-оценочных  критериев и признаков с отображением факторов рудолокализации: рудовмещающих литологических комплексов и структур, фаций метасамотитов контуров рудных тел и минерализационных зон, элементов зональности минеральных типов руд, литологических ореолов элементов-индикаторов орудинения, комплексных геофизических аномалий.

Прогнозная карта на структурно-фациальной основе с контурами промышленных и предполагаемых рудных тел и  принципиальной моделью месторождения.

Подсчитанные ресурсы  категории Р1, запасы категории С2 и частично С1 .

Данные о масштабах  месторождения и качестве руд.

Технико-экономические расчеты  целесообразности разведки и отработки  месторождения.

Основная цель разведки, как начальной стадии разработки - обоснование промышленного значения месторождения и ожидаемых технико-экономических  показателей, составления проекта  освоения.

Для этого устанавливают:

Формы и размеры рудных тел и их запасы по категориям С1 и С2, иногда и категории В.

Границы месторождения, его  геолого-структурные особенности, прогнозные ресурсы категории Р1.

Среднее содержание и фазовый  состав основных и сопутствующих  компонентов.

Технологические свойства руд, типы и сорта руд, степень извлечения вольфрама и сопутствующих компонентов  по лабораторным и при необходимости  – укрупненным пробам.

Горнотехнические условия  отработки.

Гидрогеологическую обстановку месторождения.

Геолого-экономические условия  месторождения, водо- и энергоснабжение  будущего предприятия, капиталовложения, производительность по руде и концентратам, себестоимость продукции, рентабельность.

Технология ведения геологоразведочных работ на вольфрам зависит от задач  той или иной стадии, ландшафтно-геохимической  обстановки, вероятного промышленного  типа оруденения.

Для выявления и оценки вольфрамовых месторождений используются геологические геохимические и  геофизические методы, горно-буровые  работы и опробование, минералого-петрографические и аналитические методы исследований. В зависимости от детальности  изучения меняется роль и соотношение  применяемых методов.

Важное значение при поисках вольфрама приобрели дистанционные методы, основанные на интерпретации космо- и аэрофотоснимков, снятых в разных спектрах. Эти данные дают важный материал для расшифровки морфоструктурных позиций потенциальных рудных объектов, позволяя более централизованно ориентировать поиски.

Визуальные поиски позволяют  выявлять прямые признаки оруденения в открытых и частично открытых районах. Этому способствуют свойства вольфрамита и шеелита, длительно сохраняющихся в условиях денудации. Разрушение вольфрамита в зоне окисления сопровождается образованием по нему тукнгстита или гидроксдов железа, которые содержат повышенные концентрации вольфрама диагностика вольфрамита обычно не вызывает затруднений. Шеелит устойчив в зоне окисления, но иногда переходит в трудно определяемую мучнистую разновидность. Поэтому для применяются люминоскопы, использующие способность шеелита к свечению в ультрафиолетовых лучах.

Шлиховой метод позволяет  выявлять прямые признаки вольфрамового оруденения. Он является наиболее чувствительным и обладает высокой разрешающей способностью. С его помощью улавливаются содержание триоксида вольфрама n*10-6 % и даже n*10-7 %. “знаки” в шлиховой пробе превышают чувствительность экспрессного полуколичественного спектрального анализа.

При поисках вольфрамовых месторождений применяется литохимический метод по вторичным и первичным  ореолам рассеивания вольфрама  и сопутствующим элементов.

Поиски по вторичным ореолам  применяются в районах развития открытых ореолов: осадосных, наложенных, диффузионного и аккумулятивного типов.

Это гумидные зоны горно-таежных областей, аккумулятивно-денудационные равнины в умеренно влажном и умеренно аридном климатах.

Поискам по вторичным ореолам  предшествует ландшафтно-геохимических  условий, составление соответствующих  карт и выяснение положения представительного  горизонта. Отбор проб производиться  из копушей и материала скважин. Поиски по первичным ореолам применяются на обнаженных территориях или с применением скважин на закрытых площадях.

Геофизические методы в комплексе  с геологическими решают задачи выявление благоприятных факторов оруденения, его оконтуривания и оценки прогнозных ресурсов. При поиске и оценке вольфрамового оруденения обязательно проведение гравио и магниторазведки, эффективно применение электроразведочных методов, гамма спектрометрического метода.

При поисках вольфрамовых руд успешно применяется нейтронно-активационная  съемка на фтор. Скважинные методы превалируют  на стадиях оценки и разведки. Из скважинных методов на ряду со стандартным комплексом каротажа (ПС, КС, кавернометрия инклинометроия, гамма-каротаж), эффективен каротаж магнитной восприимчивости (КМВ), метод заряда (МЗ) метод вызванных потенциалов (МВП), МЭП, рентгенорадиометрический каротаж (РРК).

 Эффективно также применение  гамма-гамма-плотносного (ГГК-П) и гамма-гамма-селективного каротажа (ГГК-С).

Горно-буровые работы являются неотъемлемой частью поисков и разведки их назначение- установление геохимических и геофизических аномалий, подтверждение прогноза, вскрытие рудных тел в коренном залегании и прослеживание орудинения на глубину, для оценки промышленного значения выявленного орудинения и подсчета запасов. Одновременно эти работы используются для геологического изучения месторождения, оценки качества первичных руд, отбора минералогических и технологических проб.

Информация о работе Вольфрам. Общие сведения