Автор работы: Пользователь скрыл имя, 11 Апреля 2013 в 21:25, курсовая работа
Выпаривание – процесс концентрирования растворов нелетучих веществ путем удаления жидкого летучего растворителя в виде паров. Сущность выпаривания заключается в переводе растворителя в парообразное состояние и отводе полученного пара от оставшегося сконцентрированного раствора. Выпаривание обычно проводится при кипении, т.е. в условиях, когда давление пара над раствором равно давлению в рабочем объеме аппарата.
В выпарных установках под
разряжением удается получить, возможно,
больший перепад температур между
паром, греющим первую ступень и
вторичным паром последней
Используются и выпарные
установки с ухудшенным вакуумом.
В этих схемам предусматривается
частичное использование
При выпаривании под атмосферным давлением (проводят в однокорпусных выпарных установках) вторичный пар используется и обычно удаляется в атмосферу. Такой способ выпаривания является наиболее простым, но наименее экономичным. Экономия вторичного пара может быть также достигнута в однокорпусных выпарных установках с тепловым насосом. В таких установках вторичный пар на выходе из аппарата сжимается с помощью теплового насоса (например, термокомпрессора) до давления, соответствующего температуре первичного пара, после чего он вновь возвращается в аппарат.
Многокорпусная установка позволяет значительно снизить расход тепла за счет многократного использования пара. Предельно выгодное или оптимальное число корпусов зависит одновременно от расхода пара и его стоимости, от единовременной стоимости выпарной установки, срока ее амортизации и др. На практике число корпусов обычно не превышает 5-6.
1.3 Конструкции выпарных аппаратов
Наибольшее распространение в химической и смежных отраслях промышленности получили высокопроизводительные выпарные аппараты непрерывного действия, особенно трубчатые выпарные аппараты различных типов. Нагревательные камеры таких аппаратов могут быть непосредственно соосно соединены с сепараторами в единое устройство. Возможно и устройство, состоящее из двух самостоятельных элементов: нагревательной камеры и сепаратора.
Выпарные аппараты классифицируются по различным признакам. Наиболее существенной является классификация по принципу организации циркуляции кипящего раствора в аппарате. Различают выпарные аппараты с естественной и принудительной циркуляцией раствора, пленочные и барботажные аппараты.
Хорошая циркуляция раствора в аппарате способствует интенсификации теплообмена, в первую очередь со стороны кипящей жидкости. Как известно, увеличение скорости движения жидкости приводит к уменьшению толщины теплового пограничного слоя, снижению его термического сопротивления и повышению коэффициента теплоотдачи. Кроме того, циркуляция раствора предотвращает быстрое отложение на стенках кипятильных труб твердой фазы (накипи). Появляется возможность осуществлять выпаривание кристаллизующихся и высоковязких растворов.
1.3.1 Выпарные
аппараты с естественной
Циркуляция раствора в таких аппаратах вызывается различием плотностей парожидкостной смеси в циркуляционной трубе и кипятильных трубах. Скорость (кратность) циркуляции здесь невелика (скорость движения парожидкостной смеси составляет 0,3-0,8 м/с). Поэтому коэффициенты теплопередачи также относительно низкие. Несмотря на достаточную простоту, аппараты этого типа заменяются на другие - с более интенсивной циркуляцией.
На рис. 3. показан выпарной аппарат с вынесенной циркуляционной трубой 2. В этом аппарате циркуляционная труба не обогревается, следовательно раствор в ней не кипит и парожидкостная смесь не образуется. Разность плотностей парожидкостной смеси в кипятильных трубах 1 и раствора в циркуляционной трубе больше, чем в аппаратах с центральной циркуляционной трубой, поэтому кратность циркуляции и коэффициенты теплопередачи несколько выше. Повышение скорости движения парожидкостной смеси в кипятильных трубах уменьшает возможность отложения солей, которые могут выделяться при концентрировании растворов.
Рис. 3 - Выпарной аппарат с вынесенной циркуляционной трубой: 1- нагревательная камера; 2 - циркуляционная труба; 3 - центробежный брызгоуловитель; 4 - сепарационное (паровое) пространство
Существенного снижения отложения солей можно достичь при использовании аппаратов с вынесенной зоной кипения. В таких аппаратах вследствие увеличенного гидростатического давления столба жидкости кипения в трубах нагревательной камеры не происходит, упариваемый раствор только перегревается. При выходе перегретого раствора из этих труб в трубу вскипания он попадает в зону пониженного гидростатического давления, где и происходит интенсивное его закипание.
Таким образом, предотвращается возможность отложения накипи на теплообменной поверхности труб и, следовательно, увеличиваются коэффициент теплопередачи и время эксплуатации аппарата между профилактическими ремонтами.
1.3.2 Выпарные
аппараты с принудительной
Более высокие кратности циркуляции, соответствующие скоростям движения парожидкостной смеси более 2-2,5 м/с, достигаются в выпарных аппаратах с принудительной циркуляцией (рис. 4). Повышение кратности циркуляции обеспечивается установкой в циркуляционной трубе осевых насосов 4, обладающих высокой производительностью. В связи с более высокими скоростями движения жидкости в этих аппаратах достаточно высоки коэффициенты теплопередачи - более 2000 Вт/(м2∙К), поэтому такие аппараты могут эффективно работать при меньших полезных разностях температур (равных 3-5°С). В аппаратах с принудительной циркуляцией можно с успехом концентрировать высоковязкие или кристаллизующиеся растворы.
В ряде случаев выпарные аппараты с принудительной циркуляцией выполняют с вынесенной нагревательной камерой (см. рис. 4.). В этом случае появляется возможность производить замену нагревательной камеры при ее загрязнении, а иногда к одному сепаратору подсоединять две или три нагревательные камеры. Роль зоны вскипания выполняет труба, соединяющая нагревательную камеру и сепаратор. Достоинством выпарного аппарата с соосными греющей камерой и сепаратором (см. рис. 5.) является меньшая производственная площадь, необходимая для его размещения.
Рис. 4 - Выпарной аппарат с принудительной циркуляцией и вынесенной нагревательной камерой: 1-греющая камера; 2-сепаратор; 3-циркуляционная труба; 4 – электронасосный агрегат
Рис. 5 - Выпарной аппарат с принудительной циркуляцией и вынесенной циркуляционной трубой: 1 – греющая камера; 2 – сепаратор; 3 – циркуляционная труба; 4 - электронасосный агрегат
К общим недостаткам выпарных аппаратов с принудительной циркуляцией следует отнести повышенный расход энергии, связанный с необходимостью работы циркуляционного насоса.
Все рассмотренные выше конструкции аппаратов по структуре движения в них жидкости близки к моделям идеального перемешивания, поэтому при сравнительно большом объеме циркулирующего раствора последний находится при повышенных температурах достаточно длительное время (а отдельные частицы жидкости - бесконечно долго). Это существенно затрудняет выпаривание нетермостойких растворов. Для таких растворов можно использовать пленочные выпарные аппараты.
1.3.3 Пленочные выпарные аппараты
Их относят к группе
аппаратов, работающих без циркуляции;
процесс выпаривания
Выпарной аппарат с восходящей пленкой жидкости (рис. 6) работает следующим образом. Снизу заполняют раствором трубы на 1/4 и 1/5 их высоты, подают греющий пар, который вызывает интенсивное кипение. Выделяющийся вторичный пар, поднимаясь по трубам, за счет сил поверхностного трения увлекает за собой раствор. В сепараторе пар и раствор отделяются друг от друга.
Рис. 6 - Выпарные пленочные аппараты с восходящей пленкой жидкости: 1 – греющая камера; 2 - сепоратор
В выпарном аппарате с нисходящей пленкой жидкости (рис. 7) исходный раствор подают в верхнюю часть греющей камеры 1, где обычно расположен распределитель жидкости, из которого последняя по трубам стекает вниз. Образующийся вторичный пар также движется в нижнюю часть нагревательной камеры, откуда вместе с жидкостью попадает в сепаратор 2 для отделения от раствора.
Рис. 7 - Выпарные пленочные аппараты с нисходящей пленкой жидкости: 1 – греющая камера; 2 – сепаратор
Для снижения температуры
кипения раствора процесс, как правило,
проводят под вакуумом. В этих аппаратах
удается упаривать также
Всем трубчатым выпарным
аппаратам свойствен
2 РАСЧЕТ ТРЕХКОРПУСНОЙ ВЫПАРНОЙ УСТАНОВКИ
Расчитать и спроектировать трёхкорпусную выпарную установку непрерывного действия, для выпаривания водного раствора KCl.
Gн= 3900 кг/ч
Xн= 7% (мас.)
Xк= 23% (мас.)
Pг1= 3 ат (изб.)
Pбк = 0,18 ат
tн (раствора) = 17 °С
2.1 Определение поверхности теплопередачи выпарных аппаратов
Поверхность теплопередачи каждого
корпуса выпарной установки определяется
по основному уравнению
Для определения тепловых нагрузок Q, коэффициентов теплопередачи К и полезных разностей температур Δti необходимо знать распределение упариваемой воды, концентраций растворов и их температур кипения по корпусам. Эти величины находят методом последовательных приближений.
Первое приближение
Производительность установки по выпариваемой воде определяется из уравнения материального баланса:
Подставив, получим:
кг/с.
2.1.1 Концентрации упариваемого раствора
Распределение концентраций раствора по корпусам установки зависит от соотношений нагрузок по выпариваемой воде в каждом аппарате. В первом приближении на основании практических данных принимают, что производительность по выпариваемой воде распределяется между корпусами в соответствии с соотношением:
;
кг/с;
кг/с;
кг/с.
Далее рассчитывают концентрации растворов в корпусах:
%
или 20,15 %;
%
или 28,19 %;