Арифметические основы вычислительных машин

Автор работы: Пользователь скрыл имя, 04 Сентября 2014 в 13:43, реферат

Описание работы

Все компьютеры используют для хранения информации двоичную систему. Это значит, что каждый элемент хранимой информации может иметь только два состояния. Эти состояния обозначаются как «включен» и «выключен», «истина» и «ложь», или «1» и «0». Как правило, компьютер использует эти значения в виде уровней напряжения.
Из-за двоичного представления данных компьютеры используют в своих вычислениях арифметику с двоичным основанием. Используя простейшие числа 0 и 1, можно выполнять очень сложные вычисления.

Файлы: 1 файл

Архитектура компьютера и принципы его работы.doc

— 1.02 Мб (Скачать файл)

Иногда используется еще одно понятие – локальная шина. Локальной шиной, как  правило,  называется  шина,  непосредственно подключенная к контактам микропроцессора, т.е. являющаяся продолжением шины процессора.

Процессорная шина

Любой процессор обязательно оснащён процессорной шиной, которую для архитектуры x86 принято называть FSB (Front Side Bus). По этой шине передаются данные между процессором и оперативной памятью, а также между процессором и остальными устройствами персонального компьютера. Иначе эта шина носит название системной. (В литературе часто разделяют эти два понятия процессорная и системная шина, дело в том, что поначалу процессор подключался к основной системной шине через собственную, процессорную, шину, в современных же системах эти шины стали одним целым.) Системную шину иногда также называют хост шиной.

Классическая схема организации внешнего интерфейса процессора (используемая, к примеру, компанией Intel) предполагает, что системная шина соединяет процессор  и контроллер памяти, а уже тот, в свою очередь, по специальной шине (назовём её шиной памяти) связывается с модулями ОЗУ на плате.

Тактовая частота системной шины во многом определяет производительность всей системы. Частота, на которой работает центральный процессор, определяется исходя из частоты FSB и коэффициента умножения. Фраза: «Моя материнская плата работает на частоте 100 МГц» означает, что именно системная шина работает на тактовой частоте в 100 МГц.

Параметры FSB у некоторых процессоров приведены в табл. 3.

Таблица 4

Процессор

частота FSB

Теоретическая пропускная способность

Pentium II

66 / 100 МГц

533 / 800 МБ/с

Pentium III

100 / 133 МГц

800 / 1066 МБ/с

Pentium 4

100 / 133 / 200 МГц

3200 / 4266 / 6400 МБ

Intel Core 2

200 / 266 / 333 / 400 МГц

6400 / 8533 / 10660 / 12800 МБ

Athlon XP

133 / 166 / 200 МГц

2133 / 2666 / 3200 МБ

Athlon 64/FX/Opteron

600 / 800 / 1000 МГц

4800 / 6400 / 8000 МБ


 

Шины расширения

Сначала покажем место шин расширения в общей архитектуре компьютера. В самом примитивном виде архитектура компьютера была показана на рис … (Упрощенная архитектура компьютера), покажем теперь архитектуру компьютера более детально. Эта будет опять результат некоторого упрощения, дальнейшая детализация будет сделана в разделе посвященном материнским платам.

Рисунок Уточненная архитектура компьютера, место шин разного типа в общей архитектуре



Как правило, современный персональный компьютер на базе x86-совместимого процессора устроен следующим образом: процессор через системную шину подключается к контроллеру памяти, а также к контроллеру шин расширения, к которым подключаются периферийные устройства (напрямую или через контроллеры внешних шин). Оперативная память связна с контроллером памяти через шины памяти, которая, как правило, работает на частоте большей чем частота FSB.

Интерфейс устройства

Разберем, как именно устройства подключаются к шине. Большинство адаптеров персонального компьютера, выполненных в виде отдельных плат расширения, используют как минимум один из следующих системных ресурсов:

  • порты ввода – вывода;
  • линии запросов прерывания IRQ;
  • каналы прямого доступа к памяти DMA.

Так как режимы прерывания и прямого доступа к памяти уже были рассмотрены, нам осталось разобрать, что такое  порты ввода – вывода.

Порты ввода – вывода. Каждое устройство, подключаемое в слоты расширения, или системное устройство (интегрированное на материнской плате) имеют один или несколько регистров, доступ к которым осуществляется через адресное пространство ввода/вывода. Эти регистры имеют разрядность 8, 16 или 32 бита. Адресное пространство ввода/вывода в IA-32 физически независимо от пространства оперативной памяти и имеет ограниченный объём, составляющий 216 (65536) адресов ввода/вывода. Таким образом, понятие порта ввода/вывода можно определить как 8-, 16- или 32-разрядный аппаратный регистр, имеющий определённый адрес в адресном пространстве ввода/вывода. Вся работа системы с устройствами на  самом низком уровне выполняется с использованием портов ввода/вывода, для работы с портами предусмотрены специальные инструкции.

Какие именно порты используются устройством в системе Windows можно увидеть при помощи диспетчера устройств (там же где мы видим используемую  устройством  линию прерывания, Рис …).

Эволюция и разновидности шин

Теперь рассмотрим эволюцию и характеристики шин расширения, через которые подключаются разнообразные устройства, расширяющие возможности компьютера (сетевая карта, звуковая карта и пр.).

Для обзора шин расширения сведем их характеристики в таблицу. В качестве характеристик будут фигурировать разрядности шины адреса и шины данных, тактовая частота, скорость передачи данных.

Таблица 5 Шины ввода вывода

Наименование

Разрядность шины адреса

Разрядность шины данных)

Тактовая частота

Скорость передачи данных

ISA

16

24

8 МГц

5.3 Мбайт/с

VLB

32

32

Частота процессора

80 Мбайт/с

PCI

32

32 (64)

33, 66 МГц 

133 Мбайт/с (33 МГц)

266 Мбайт/с (66 МГц)

AGP

32

32

66 МГц

2 ГБ/с. (только одно устройство)

PCI Express

Последовательная шина, но программно совместима с  PCI

 

2,5 Гбит/с.


 

ISA

В 1981 году компания IBM представила шину ISA (Industrial Standard Architecture - промышленная стандартная архитектура). Она стала одной из первых шин расширения ввода-вывода для персональных компьютеров.

Шина ISA представляла интерфейс для подключения различных адаптеров и контроллеров периферийных устройств. Разъём состоял из 62-х контактов, из них 8 — для данных, 20 — линии адреса, 6 — для прерываний от IRQ2 до IRQ7, тактовая частота шины была 4.7 МГц. Пропускная способность этой шины достигала 1.2 Мб/сек.

ISA -16

В 1984 году шина была усовершенствована — стала способной передавать 16-бит данных за такт, увеличена тактовая частота до 8 МГц, пропускная способность выросла до 5.3 Мб/сек, размер адресуемой памяти был увеличен с 4 МБ до 16 МБ.

Поскольку частота процессора скоро стала значительно выше частоты системной шины, появилось понятие деление частоты, когда частота, задаваемая тактовым генератором для всей системы, делится на некое число для установки частоты работы шины расширений.

В настоящее время шина ISA считается устаревшей и применяется только в промышленных компьютерах. На материнских платах обычных компьютеров ее заменила шина LPC (см. ниже).

VLB

VESA local bus  (VLB) по существу, является расширением внутренней шины процессора Intel 80486 для связи с видеоадаптером (соответственно характеризуется теми же параметрами, что и шина i486). Разработана в 1992 г. Реальная скорость передачи данных по VLB — 80 Мбайт/с.

PCI

PCI (англ. Peripheral component interconnect, дословно — взаимосвязь  периферийных компонентов) – разработана компанией Intel в 1991 году.

Существует 32-разрядная и 64-разрядная реализация шины PCI. В 64-разрядной реализации используется разъем с дополнительной секцией. 32-разрядные и 64-разрядные платы можно устанавливать в 64-разрядные и 32-разрядные разъемы и наоборот. Платы и шина определяют тип разъема и работают должным образом. При установке 64-разрядной платы в 32-разрядный разъем остальные выводы не задействуются и просто выступают за пределы разъема.

На шине PCI сигналы адреса и данных мультиплексированы, поэтому для передачи каждых 32 или 64 разрядов требуется два шинных цикла: один - для пересылки адреса, а второй - для пересылки данных. Однако возможен также пакетный режим, при котором вслед за одним циклом передачи адреса разрешается осуществить до четырех циклов передачи данных (до 16 байт в PCI-32). После этого устройство должно подать новый запрос на обслуживание и снова получить управление над шиной (и выполнить адресный цикл). Поэтому шина PCI-32 с тактовой частотой 33 МГц имеет пиковую скорость обычной передачи около 66 Мбайт/с (два шинных цикла для передачи 4 байт) и пиковую скорость пакетной передачи около 105 Мбайт/с.

PCI поддерживает  процедуру прямого доступа к  памяти ведущего устройства на  шине (bus mastering DMA).

Шина поддерживает технологию Plug and Play (сокр. PnP), что дословно переводится как «включил и играй (работай)» – технология, предназначенная для быстрого определения и конфигурирования устройств в компьютере. После старта компьютера системное программное обеспечение обследует конфигурационное пространство PCI каждого устройства, подключённого к шине, и распределяет ресурсы.

AGP

В 1996 году фирмой Intel был предложен выделенный интерфейс для подключения видеокарты – AGP (Accelerated Graphics Port - высокоскоростной графический порт).

Интерфейс AGP по топологии не является шиной, т.к. поддерживает только одну видеокарту, т.е. это порт. Порт AGP построен на основе PCI с тактовой частотой 66 МГц и 32-разрядной шиной данных. Для повышения пропускной способности AGP предусмотрена возможность передавать данные с помощью специальных сигналов, используемых как стробы, вместо сигнала тактовой частоты 66 МГц. Например, в режиме AGP 2x данные передаются как по переднему, так и по заднему фронту тактового сигнала, что позволяет достичь пропускной способности 533 Мбайт/с.

Увеличение пропускной способности AGP достигается также с помощью конвейеризации. Сравним: На PCI по выставленному адресу после задержки появляются данные. На AGP сначала выставляется пакет адресов, на которые следует ответ пакетом данных (рис. ).

В настоящее время порт AGP практически исчерпал свои возможности и активно вытесняется системным интерфейсом PCI Express.

 

PCI Express

Интерфейс PCI Express (PCI-E) использует концепцию PCI, однако физическая их реализация кардинально отличается. На физическом уровне PCI Express представляет собой не шину, а некое подобие сетевого взаимодействия на основе последовательного протокола. Высокое быстродействие PCI Express позволяет в перспективе отказаться от других системных интерфейсов (AGP, PCI).

Одна из концептуальных особенностей интерфейса PCI Express, позволяющая существенно повысить производительность системы, - использование топологии «звезда». В топологии «шина» устройствам приходится разделять пропускную способность PCI между собой. При топологии «звезда» (рис.) каждое устройство монопольно использует канал, связывающий его с концентратором (switch) PCI Express, не деля ни с кем пропускную способность этого канала.

 

 

 

 

На современных материнских платах PCI Express обычно используют для подключения видеокарты.

Разработаны различные модификации шины (PCI-E x1, x4, x8, x16). Даже самая медленная PCI-E x1 по скорости примерно в два раза превосходит скорость AGP. PCI Express обеспечивает скорость передачи до 2.5 Гбит/с (до 5 Гбит/с для версии PCI Express 2.0).

Слот PCI-E 16x, как самый скоростной (до 16 Гб/с), обычно используется для установки видеокарты. Слоты PCI-E x1 (x4, x8) обычно  используется для установки сетевых адаптеров, звуковых карт, TV-тюнеров. .на плате может быть расположено до 7 слотов  PCI-E.

LPC

Шина LPC (Low Pin Count Interface, Интерфейс малого количества контактов) была введена для замены шины ISA. используется для подключения устройств, не требующих большой пропускной способности. К таким устройствам относятся микросхема перепрограммируемой памяти (BIOS) и контроллеры «устаревших» низкопроизводительных интерфейсов передачи данных, такие как последовательный и параллельные интерфейсы, интерфейс подключения манипулятора «мышь» и клавиатуры, флоппи-контроллер.

Хотя LPC физически сильно отличается от ISA, программная модель периферийных контроллеров, подключаемых через LPC, осталась прежней. Это позволило без доработок использовать на компьютерах с LPC программное обеспечение, разработанное для управления периферийными контроллерами, которые подключались к шине ISA.

В соответствии со своим названием интерфейс имеет всего 7 контактов: 4 для данных и 3 управляющих. При частоте тактового сигнала 33,3 МГц пропускная способность шины LPC составляет 16,67 МБ/с.

Интерфейсы периферийных устройств

Рассмотрим теперь интерфейсы внешних компонент – периферийных устройств.

PS/2

PS/2 это самый старый из актуальных среди дешёвых интерфейсов. Он является последовательным синхронным интерфейсом (напоминаем, что при синхронной передаче данных устройство не дожидается сигналов подтверждения). Данный вид интерфейса, используется преимущественно для подключения мыши и клавиатуры, на материнской расположены два разъема для клавиатуры (фиолетового цвета) и мыши (зеленого), соответственно.

Остановимся на использовании клавиатуры и мыши, которые подключаются к этим разъемам.

Процессор общается с клавиатурой через контроллер интерфейса клавиатуры, установленный на системной плате. Для обмена информацией в основном используется порт (60h), из которого принимаются коды нажатых клавиш (скан-кода). О необходимости чтения скан-кода контроллер сигнализирует процессору через аппаратное прерывание, сигнал которого вырабатывается по каждому событию клавиатуры (нажатию и отпусканию клавиши).

Мышь может работать в одном из двух режимов. В потоковом режиме (stream mode) мышь посылает данные по любому изменению состояния; в режиме опроса (remote mode) мышь передает данные только по запросу процессора. По приему пакета от мыши контроллер вырабатывает прерывание, которое обрабатывается драйвером мыши.

Интерфейс RS-232

Стандарт на последовательный интерфейс RS-232 был опубликован в 1969 г. До недавнего времени последовательный интерфейс использовался для широкого спектра периферийных устройств (плоттеры, принтеры, мыши, модемы и др.), но сейчас активно вытесняется интерфейсом USB. В настоящее время чаще всего используется в промышленном и узкоспециальном оборудовании.

Информация о работе Арифметические основы вычислительных машин