Автор работы: Пользователь скрыл имя, 14 Декабря 2014 в 14:06, реферат
Современный этап развития техники характеризуется все возрастающим проникновении электроники во все сферы жизни и деятельности людей. По данным американской статистики до 80% от объема всей промышленности занимает электроника. Достижения в области электроники способствуют успешному решению сложнейших научно–технических проблем. Повышению эффективности научных исследований, созданию новых видов машин и оборудования.
Введение........................................................................................................................3
Фундамент развития электроники..........................................................................4
Этапы развития электроники...................................................................................6
1 Этап...................................................................................................................6
2 Этап...................................................................................................................6
Третий период развития электроники...................................................................11
Изобретение точечного транзистора............................................................11
Изобретение плоскостного биполярного транзистора..............................12
Предпосылки появления транзисторов.......................................................13
История развития полевых транзисторов..................................................15
История развития серийного производства транзисторов в США и СССР...................................................................................................................17
Предпосылки появления микроэлектроники.......................................................20
Требования миниатюризации электрорадиоэлементов со стороны разработчиков радиоаппаратуры.................................................................20
Основы развития технологии микроэлектроники....................................21
Латографические процессы используемые для формирования токологии микросхем......................................................................................23
Перспективы развития планарной технологии в США...........................25
IV период развития электроники............................................................................26
Изобретение первой интегральной микросхемы.......................................26
Развитие серийного производства интегральных микросхем................26
Этапы развития микроэлектроники............................................................28
История создания микроэлектроники в СССР..........................................29
Заключение..................................................................................................................30
Литература...................................................................................................................31
4.
В 1963 г. Хофштейн и Хайман описали другую
конструкцию полевого транзистора, где
используется поле в диэлектрике, расположенном
между пластиной полупроводника и металлической
пленкой. Такие транзисторы со структурой
металл-диэлектрик-
1) Развитие
физики полупроводников и
2) Создание
новых технологических методов,
таких как тонкопленочные
3) Широкое
внедрение транзисторов в
4.5 История развития
серийного производства
1. Ускоренная разработка и производство транзисторов развернулись в США в кремниевой долине, расположенной в 80-ти км от Сан-Франциско. Возникновение кремниевой долины связывают с именем Ф. Термена – декана инженерного факультета Стенфордского университета, когда его студенты Хьюлетт, Паккард и братья Вариан создали фирмы, прославившие их имена во время второй мировой войны.
Бурное развитие кремниевой долины началось, когда Шокли покинул "BTL" и основал собственную фирму по производству кремниевых транзисторов при финансовой помощи питомца Калифорнийского политехнического института А. Беккмана. Его фирма начала работу осенью 1955 г., как отделение фирмы "Beckman Instruments" в армейских казармах Паоло-Алто. Шокли пригласил 12 специалистов (Хорсли, Нойс, Мур, Гринич, Робертс, Хорни, Ласт, Джонс, Клейнер, Блэнк, Нэпик, Са). В 1957 г. фирма изменила свое название на "Shockly Transistor Corporation". Вскоре 8 специалистов (Нойс, Мур, Гринич, Робертс, Хорни, Ласт, Клейнер, Блэнк) договорились с Беккманом и создали отдельную самостоятельную фирму "Fairchild Semiconductor Corporation" в основе деятельности, которой лежало массовое производство высококачественных кремниевых биполярных транзисторов. В качестве первого изделия был выбран в 1957 г. кремниевый n-p-n мезатранзистор с двойной диффузией типа 2N696. Он требовал всего лишь два процесса фотолитографии для создания эмиттера и металлических контактов. Термин мезатранзистор был предложен Эрли из "BTL". Введя дополнительную операцию фотолитографии, Хорни заменил мезаструктуру коллектора диффузионным карманом и закрыл место пересечения эмиторного и коллекторного переходов с поверхностью термическим оксидом(1000 oС). Технологию таких транзисторов Хорни назвал планарным процессом. В 1961 г. был начат крупносерийный выпуск двух планарных кремниевых биполярных транзисторов 2N613(n-p-n), 2N869(p-n-p)
Институт полупроводниковых материалов и оборудования (США) составил генеалогическое дерево и первые ветви отпочкованные от фирмы Shockley выглядят так: Ласт и Хорни в 1961 году основали Amelco, которая позже превратилась в Teledyne Semiconductor. Хорни в 1964 году создал Union Corbide Electronics, в 1967 году – Intersil. Ежегодно создавалось по четыре фирмы, и за период с 1957 по 1983 г. в кремниевой долине было создано более 100 фирм. Рост продолжается и сейчас. Он стимулируется близостью Стенфордского и Калифорнийского университета и активным участием их сотрудников в деле организации фирм (Рис. 4.9).
Рис. 4.9 Динамика развития кремниевой долины.
1914–1920 гг |
1955 – 57 гг |
1960 г |
1961 г |
1968 г |
Хьюлетт-Пакард (два друга и братья Вариан) |
BTL
Shockley SemiconductorLaboratory(Beckman Instruments) Паоло Алто(военные казармы). СаХорсли Джонс 12 чел. Нэпик Нойс Мур Гринич Робертс Хорни Ласт Клейнер Блэнк |
Fairchild Semiconductor Corporation
8 чел. |
Amelco + Уэнлесс Сноу Эндрю Гроув Дил |
Intel(Интергрейтед электроникс) 12 чел. (Маунтин Вью) |
5. Предпосылки появления микроэлектроники
5.1 Требования миниатюризации
С появлением
биполярных полевых
В 60-е годы огромные усилия исследователей были направлены на создание тонкопленочных активных элементов. Однако надежно работающих транзисторов с воспроизводимыми характеристиками никак не удавалось получить, поэтому в тонкопленочных ГИС продолжают использовать активные навесные элементы. К моменту изобретения интегральных микросхем из полупроводниковых материалов уже научились изготавливать дискретные транзисторы и резисторы. Для изготовления конденсатора уже использовали емкость обратно смещенного p-n перехода. Для изготовления резисторов использовались омические свойства кристалла полупроводника. На очереди стояла задача объединить все эти элементы в одном устройстве.
5.2 Основы развития технологии микроэлектроники.
1. Развитие микроэлектроники определяется уровнем достигнутой микротехнологии.
Планарная технология. При планарной
технологии требуется
1.1 Технологические процессы получения тонких пленок.
1) Эпитаксия (упорядочение) – процесс наращивания на кристаллической подложке атомов упорядоченных в монокристаллическую структуру. с тем чтобы структура наращиваемой пленки полностью повторила кристаллическую ориентацию подложки. Основное достоинство техники эпитаксии состоит в возможности получения чрезвычайно чистых пленок при сохранении возможности регулирования уровня легирования. Применяют три типа эпитаксиального наращивания: газовую, жидкостную и молекулярную.
При газовой эпитаксии водород с примесью четырех хлористого кремния (SiCl4 + H2) с контролируемой концентрацией пропускают через реактор (Рис. 5.1), в котором на графитовом основании (1) расположены кремниевые пластины (2). С помощью индукционного нагревателя графит прогревается выше 1000 0С эта температура необходима для обеспечения правильной ориентации осаждаемых атомов в решетке и получении монокристаллической пленки. В основе процесса лежит обратимая реакция: SiCl4 + 2H2 ↔ Si + 4HCl – прямая реакция соответствует получению эпитаксиальной пленки, обратная реакция травлению подложки. Для легирования эпитаксиальной пленки в газовый поток добавляют примесные атомы. Фосфорит (PH3) используют в качестве донорной примеси, а диборан (B2 H3) в качестве акцепторной примеси.
При жидкостной эпитаксии получают многочисленные структуры из разных материалов. На Рис. 5.2: 1, 2, 3, 4 – растворы
5 – скользящий графитовый держатель растворов
6 – подложка
7 – основной графитовый держатель
8 – толкатель
9 – электрическая печь
10 – кварцевая труба
11 – термофара
Подвижная конструкция с различными растворами последовательно подводит растворы к подложке. Таким образом получают гетеропереходы с различными материалами толщиной менее 1 мкм (Ge – Si, GaAs – GaP)
Молекулярно-лучевая
эпитаксия проводится в сверхвы
2) Окисление.
Слой двуокиси кремния
Рис. 5.4 : 1 – подложка
2 – кварцевая лодочка
3 – нагреватель
4 – кварцевая труба
Окислительной средой может быть сухой или влажный кислород. Окисление происходит быстрее в атмосфере влажного кислорода, поэтому оно используется для получения толстых пленок SiO2. Наиболее часто используется толщина окисла составляющая десятые доли мкм, а верхний практический предел 1–2 мкм.
5.3. Литографические процессы используемые для формирования токологии микросхем.
3.1 Фотолитография.
Фотолитография является основным технологическим процессом в микроэлектронике при получении линий шириной до 1 мкм и его долей. Сначала изготавливают оригинал топологии микросхемы в сильноувеличенном размере (до 500 раз). Затем делают фотографию с уменьшением в 100 раз, затем в 10 раз и т.д. пока окончательное изображение на пластине не будет точно соответствовать требуемой схеме. Полученная фотопластина используется в качестве маски для передачи рисунка на поверхность подложки. Рассмотрим фотолитографический процесс для получения отверстия в слое двуокиси кремния расположенном на подложке. Рис. 5.5