История развития компьютерной техники

Автор работы: Пользователь скрыл имя, 13 Октября 2015 в 16:49, реферат

Описание работы

Введение ЭВМ в состав станции в качестве ее главного, управляющего центра необыкновенно расширило возможности станции по осуществлению разных телефонных соединений и открыло широкий путь к таким коммутационным действиям, о которых люди прежде не могли и мечтать. Достигаются эти новые возможности в основном соответствующим рациональным программированием управляющей ЭВМ. Однако необходимо вкратце разъяснить это важнейшее понятие, получающее теперь все большее значение в деле автоматизации всех видов производственной деятельности человека.

Содержание работы

Введение
Основная часть
1.1.История создания
1.2.ЭВМ разных поколений
1.3.Сравнительная характеристика
1.4.Современная компьютерная техника
3.Заключение

Файлы: 1 файл

МКОУ СОШ (2).docx

— 78.06 Кб (Скачать файл)

МКОУ СОШ №11 (Муниципальное казенное образовательное учреждение средняя образовательная школа № 11)                                                                                                                               

 

 

 

 

Реферат на тему:» История развития компьютерной техники»                                                                                                                                    

 

 

 

 

 

                                                                       Выполнил:

                                                                       ученик

                                                                       Лесникова Дарья

                                                                        Проверил:

                                                                        преподаватель 

                                                                        информатики

                                                                        Полунина

                                                                        Ольга

                                                                        Викторовна 

 

 

 

 

 

 
                                               Лиски 

                                             2014 год

 

Содержание

  1. Введение
  2. Основная часть

1.1.История создания

1.2.ЭВМ разных поколений

1.3.Сравнительная характеристика

1.4.Современная компьютерная техника

                3.Заключение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                 -1-

 

 

Введение

 

Введение ЭВМ в состав станции в качестве ее главного, управляющего центра необыкновенно расширило возможности станции по осуществлению разных телефонных соединений и открыло широкий путь к таким коммутационным действиям, о которых люди прежде не могли и мечтать. Достигаются эти новые возможности в основном соответствующим рациональным программированием управляющей ЭВМ. Однако необходимо вкратце разъяснить это важнейшее понятие, получающее теперь все большее значение в деле автоматизации всех видов производственной деятельности человека. Первые созданные человеком автоматические устройства были довольно простыми и выполняли лишь несложные и однообразные технические операции. Коренной перелом в ходе развития программирующих устройств произошел после внедрения в них электронных приборов и особенно комплексных электронных устройств (БИС, микропроцессоров). Электроника весьма ускорила темп развития программирования автоматического управления. Во-первых, она позволила создать так называемые запоминающие устройства (ЗУ), которые, кстати, нашли широкую область применения в ЭВМ. В этих устройствах, имеющих небольшие размеры, можно накапливать практически неограниченное количество информационных данных, характеризующих различные программы работы автоматического оборудования. Во-вторых, она позволила весьма усложнить и разнообразить программы и во много раз увеличить их производственную эффективность. В-третьих, электроника сделала возможным комплексное программирование не только отдельных устройств или машин, но и больших составных агрегатов, станочных линий и даже цехов или заводов. Таким образом, программирование сделалось основой организации работы автоматического оборудования во всех областях современной техники и развивается теперь на базе специальной научной дисциплины, которая называется «Программирование автоматических устройств» Возвращаясь теперь к современным электронным автоматическим телефонным станциям, заметим, что идея программирования автоматического оборудования нашла в области ЭАТС исключительно широкие возможности плодотворного применения

 

                                                               -2-

История создания

 

 

Первые ЭВМ, изготовленные с использованием электронных ламп 1-е поколение ЭВМ, были созданы исключительно для выполнения объемных научно-технических расчетов. Эти установки имели гигантские по сегодняшним масштабам размеры, отличались большим энергопотреблением, требовали высоких капитальных и эксплуатационных расходов. Например, первая в мире ЭВМ «ЭНИАК» созданная в 1945 г. учеными Пенсильванского университета (США), весила 30 т, содержала 18000 электронных ламп и стоила почти 2,8 миллиона долларов по ценам того времени. При этом она выполняла около 5000 операций сложения или примерно 360 операций умножения в секунду.Освоение и промышленный выпуск полупроводниковых приборов обеспечили замену «громоздких и горячих» электронных ламп «миниатюрными и теплыми» транзисторами. Это привело к созданию вычислительных устройств, характеризующихся более высокими быстродействием, надежностью и функциональными возможностями при меньших габаритах, стоимости и эксплуатационных расходах 2-е поколение. Принцип программной совместимости и технология интегральных схем положили начало третьему этапу развития ЭВМ. Для машин 3-го поколения характерно не только улучшение габаритно-стоимостных показателей, но и модульный принцип организации технических и программных средств, обеспечивший возможность составлять приспособленную для соответствующего конкретного назначения конфигурацию ЭВМ. Машины 3-го поколения обрабатывают не только числа, но и слова, тексты, т. е. оперируют буквенно-цифровой информацией. Изменилась и форма общения человека с машиной. Пользователи получили доступ к ЭВМ. Машина через выносной терминал «сама пришла» к человеку в его служебное помещение. Спираль развития вычислительной техники и ее использования человеком завершила очередной виток. Четвертое поколение ЭВМ служит еще одним примером перехода количества в качество. При их создании как будто не произошло ничего особенного. Просто интеграция электронных схем повысилась настолько, что стало технически возможным сосредоточить значительное число -функциональных устройств в одной большой интегральной схеме (БИС) и, таким образом, изготовить по этой технологии большие (по функциональным возможностям) блоки или всю ЭВМ в целом. 
                                                              -3- 
Но появление БИС — это не только создание более совершенной элементной базы ЭВМ. Оно создало предпосылки для качественного изменения вычислительной техники. Применение БИС привело к новым представлениям о функциональных возможностях элементов и узлов ЭВМ. Разработка (1969 г., Intel, США) и промышленное освоение микропроцессоров (МП) обеспечили широкие возможности для децентрализации вычислительной мощности и встраивания вычислительных средств в оборудование и приборы. В 1812 году английский математик и экономист Чарльз Бэббидж начал работу над созданием, так называемой «разностной» машины, которая, по его замыслам, должна была не просто выполнять арифметические действия, а проводить вычисления по программе, задающей определённую функцию. В качестве основного элемента своей машины Бэббидж взял зубчатое колесо для запоминания одного разряда числа (всего таких колёс было 18). К 1822 году учёный построил небольшую действующую модель и рассчитал на ней таблицу квадратов. В 1834 году Бэббидж приступил к созданию «аналитической» машины. Его проект содержал более 2000 чертежей различных узлов. Машина Бэббиджа предполагалась как чисто механическое устройство с паровым приводом. Она состояла из хранилища для чисел («склад»), устройства для производства арифметических действий над числами (Бэббидж назвал его «фабрикой») и устройства, управляющего операциями машины в нужной последовательности, включая перенос чисел из одного места в другое; были предусмотрены средства для ввода и вывода чисел. Бэббидж работал над созданием своей машины до конца своей жизни (он умер в 1871 году), успев сделать лишь некоторые узлы своей машины, которая оказалась слишком сложной для того уровня развития техники. При содействии Бэббиджа Ада Лавлейс составляла первые программы для решения систем двух линейных уравнений и для вычисления чисел Бернулли. Леди Лавлейс стала первой в мире женщиной-программистом. После Бэббиджа значительный вклад в развитие техники автоматизации счёта внёс американский изобретатель Г. Холлерит, который в 1890 году впервые построил ручной перфоратор для нанесения цифровых данных на перфокарты и ввёл механическую сортировку для раскладки этих перфокарт в зависимости от места пробивал. Им была построена машина — табулятор, которая прощупывала отверстия на перфокартах, воспринимала их как соответствующие числа и подсчитывала их. Табуляторы Холлерита были использованы при переписи населения в США, Австрии, Канаде, Норвегии и в др. странах. Они же использовались при первой Всероссийской переписи населения в

                                                           -4-

 

1897 году, причём Холлерит приезжал  в Россию для организации этой  работы. В 1896 году Холлерит основал  всемирно известную фирму Computer Tabulating Recording, специализирующуюся на выпуске  счетно-перфорационных машин и  перфокарт. В дальнейшем фирма  была преобразована в фирму International Business Machines (IBM), ставшую сейчас передовым  разработчиком компьютеров.Новый инструмент — ЭВМ — служит человеку пока лишь чуть больше полвека. ЭВМ — одно из величайших изобретений середины XX века, изменивших человеческую жизнь во многих ее проявлениях. Вычислительная техника превратилась в один из рычагов, обеспечивающих развитие и достижения научно-технического прогресса. Первым создателем автоматической вычислительной машины считается немецкий учёный К. Цузе. Работы им начаты в 1933 году, а в 1936 году он построил модель механической вычислительной машины, в которой использовалась двоичная система счисления, форма представления чисел с «плавающей» запятой, трёхадресная система программирования и перфокарты. Независимо от Цузе построением релейных автоматических вычислительных машин занимались в США Д. Штибитц и Г. Айкен.Д. Штибитц, тогда работавший в фирме Bell, собрал на телефонных реле первые суммирующие схемы. В 1940 году вместе с С. Уильямсом Штибитц построил «вычислитель комплексных чисел», или релейный интерпретатор, который последствии стал известен как специализированный релейный компьютер «Bell-модель 1». Последняя из них разработана Штибитцем в 1946 году (модель V) — это был компьютер общего назначения, содержащий 9000 реле и занимающий площадь почти 90 м2, вес устройства составлял 10 т.В 1942 году профессор электротехнической школы Мура Пенсильванского университета Д. Маучли представил проект «Использование быстродействующих электронных устройств для вычислений», положивший начало созданию первой электронной вычислительной машины ENIAC. Около года проект пролежал без движения, пока им не заинтересовалась Баллистическая исследовательская лаборатория армии США. В 1943 году под руководством Д. Маучли и Д. Эккерта были начаты работы по созданию ENIAC, демонстрация состоялась 15 февраля 1946 года. Новая машина имела «впечатляющие» параметры: 18000 электронных ламп, площадь 90 × 15 м2, весила 30 т и потребляла 150 кВт. ENIAC работала с тактовой частотой 100 кГц и выполняла сложение за 0,2 мс, а умножение — за 2,8 мс, что было на три порядка быстрее, чем это могли делать релейные машины.

                                                          -5-                                                               

ЭВМ разных поколений

 

Первое поколение ЭВМ (1948 — 1958 гг.)

Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, “Стрела”, “Минск-1”, “Урал-1”, “Урал-2”, “Урал-3”, M-20, "Сетунь", БЭСМ-2, "Раздан". Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2—3 тысяч операций в секунду, емкость оперативной памяти—2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина M-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам). Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10-3 с. Производственные системы и компиляторы пока не появились. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Второе поколение ЭВМ (1959 — 1967 гг.)

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличело емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например, ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д. К ЭВМ второго поколения относятся:

·  ЭВМ М-40, -50 для систем противоракетной обороны;

                                                                        -6-

·  Минск -2, -12, -14 для решения инженерных, научных и конструкторских задач математического и логического характера;

·  Минск-22 предназначена для решения научно-технических и планово-экономических задач;

·  БЭСМ-3 -4, -6 машин общего назначения, ориентированных на решение сложных задач науки и техники;

·  М-20, -220, -222 машина общего назначения, ориентированная на решение сложных математических задач;

·  МИР-1 малая электронная цифровая вычислительная машина, предназначенная для решения широкого круга инженерно-конструкторских математических задач,

·  "Наири" машина общего назначения, предназначенная для решения широкого круга инженерных, научно-технических, а также некоторых типов планово-экономических и учетно-статистических задач;

·  Рута-110 мини ЭВМ общего назначения;  
 
и ряд других ЭВМ.  
 
ЭВМ БЭСМ-4, М-220, М-222 имели быстродействие порядка 20—30 тысяч операций в секунду и оперативную память—соответственно 8К, 16К и 32К. Среди машин второго поколения особо выделяется БЭСМ-6, обладающая быстродействием около миллиона операций в секунду и оперативной памятью от 32К до 128К (в большинстве машин используется два сегмента памяти по 32К каждый). Данный период характеризуется широким применением транзисторов и усовершенствованных схем памяти на сердечниках. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода. В конце указанного периода появились универсальные и достаточно эффективные компиляторы для Кобола, Фортрана и других языков. Была достигнута уже величина времени доступа 1х10-6 с, хотя большая часть элементов вычислительной машины еще была связана проводами. Вычислительные машины этого периода успешно применялись в областях, связанных с обработкой множеств данных и решением задач, обычно требующих выполнения рутинных операций на заводах, в учреждениях и банках. Эти вычислительные машины работали по принципу пакетной обработки данных. По существу, при этом копировались ручные методы обработки данных.

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                           -7-

 

 

 

                                                               - 7-

 

 

Третье поколение ЭВМ (1968 — 1973 гг.)

Элементная база ЭВМ - малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились. В СССР в 70-е годы получают дальнейшее развитие АСУ. Закладываются основы государственной и межгосударственной, охватывающей страны - члены СЭВ (Совет Экономической Взаимопомощи) системы обработки данных. Разрабатываются универсальные ЭВМ третьего поколения ЕС, совместимые как между собой (машины средней и высокой производительности ЕС ЭВМ), так и с зарубежными ЭВМ третьего поколения (IBM-360 и др. - США). В разработке машин ЕС ЭВМ принимают участие специалисты СССР, Народной Республики Болгария (НРБ), Венгерской Народной Республики (ВНР), Польской Народной Республики (ПНР), Чехословацкой Советской Социалистической Республики (ЧССР) и Германской Демократической Республики (ГДР). В то же время в СССР создаются многопроцессорные и квазианалоговые ЭВМ, выпускаются мини-ЭВМ "Мир-31", "Мир-32", "Наири-34". Для управления технологическими процессами создаются ЭВМ сериии АСВТ М-6000 и М-7000 (разработчики В.П.Рязанов и др.). Разрабатываются и выпускаются настольные мини-ЭВМ на интегральных микросхемах М-180, "Электроника -79, -100, -125, -200", "Электроника ДЗ-28", "Электроника НЦ-60" и др. К машинам третьего поколения относились "Днепр-2", ЭВМ Единой Системы (ЕС-1010, ЕС-1020, ЕС-1030, ЕС-1040, ЕС-1050, ЕС-1060 и несколько их промежуточных модификаций - ЕС-1021 и др.), МИР-2, "Наири-2" и ряд других. Характерной чертой данного периода явилось резкое снижение цен на аппаратное обеспечение. Этого удалось добиться главным образом за счет использования интегральных схем. Обычные электрические соединения с помощью проводов при этом встраивались в микросхему. Это позволило получить значение времени доступа до 2х10 -9 с. В этот период на рынке появились удобные для пользователя рабочие станции, которые за счет объединения в сеть значительно упростили возможность получения малого времени доступа, обычно присущего большим машинам. Дальнейший прогресс в развитии вычислительной техники был связан с разработкой полупроводниковой памяти, жидкокристаллических экранов и электронной памяти. В конце этого периода произошел коммерческий прорыв в области микроэлектронной технологии. Возросшая производительность вычислительных машин и только появившиеся многомашинные системы дали принципиальную возможность реализации таких новых задач, которые были достаточно сложны и часто приводили к неразрешимым проблемам при их программной реализации. Начали говорить о "кризисе программного обеспечения". Тогда появились эффективные методы разработки программного обеспечения. Создание новых программных продуктов теперь все чаще основывалось на методах планирования и специальных методах программирования. Этот период связан с бурным развитием вычислительных машин реального времени. Появилась тенденция, в соответствии с которой в задачах управления наряду с большими вычислительными машинами находится место и для использования малых машин. Так, оказалось, что миниЭВМ исключительно хорошо справляется с функциями управления сложными промышленными установками, где большая вычислительная машина часто отказывает. Сложные системы управления разбиваются при этом на подсистемы, в каждой из которых используется своя миниЭВМ. На большую вычислительную машину реального времени возлагаются задачи планирования (наблюдения) в иерархической системе с целью координации управления подсистемами и обработки центральных данных об объекте.

Информация о работе История развития компьютерной техники