Автор работы: Пользователь скрыл имя, 14 Января 2014 в 20:23, реферат
Микроконтроллер (MCU) — микросхема, предназначенная для управления электронными устройствами. Микроконтроллеры впервые появились в том же году, что и микропроцессоры общего назначения (1971). Разработчики микроконтроллеров придумали остроумную идею – объединить процессор, память, ПЗУ и периферию внутри одного корпуса, внешне похожего на обычную микросхему. С тех пор производство микроконтроллеров ежегодно во много раз превышает производство процессоров, а потребность в них не снижается. По сути, это однокристальный компьютер, способный выполнять простые задачи. Использование одной микросхемы, вместо целого набора, как в случае обычных процессоров, применяемых в персональных компьютерах, значительно снижает размеры, энергопотребление и стоимость устройств, построенных на базе микроконтроллеров.
Микроконтроллер (MCU) — микросхема, предназначенная для управления электронными устройствами. Микроконтроллеры впервые появились в том же году, что и микропроцессоры общего назначения (1971). Разработчики микроконтроллеров придумали остроумную идею – объединить процессор, память, ПЗУ и периферию внутри одного корпуса, внешне похожего на обычную микросхему. С тех пор производство микроконтроллеров ежегодно во много раз превышает производство процессоров, а потребность в них не снижается. По сути, это однокристальный компьютер, способный выполнять простые задачи. Использование одной микросхемы, вместо целого набора, как в случае обычных процессоров, применяемых в персональных компьютерах, значительно снижает размеры, энергопотребление и стоимость устройств, построенных на базе микроконтроллеров.
Микроконтроллеры являются основой для построения встраиваемых систем, их можно встретить во многих современных приборах, таких, как телефоны, стиральные машины и т. п. Большая часть выпускаемых в мире процессоров — микроконтроллеры[3].
В отличие от
микросхем "жесткой логики", микроконтроллер
- это микросхема, у которой, во-первых,
зависимость выходных сигналов от входных
определяется исключительно правилами,
заложенными разработчиком
Достаточно широкое распространение имеют МК фирмы ATMEL, которые располагают большими функциональными возможностями.
Применение
МК можно разделить на два этапа:
первый - программирование, когда пользователь
разрабатывает программу и прош
К наиболее распространенным встроенным устройствам относятся устройства памяти и порты ввода/вывода (I/O), интерфейсы связи, таймеры, системные часы. Устройства памяти включают оперативную память (RAM), постоянные запоминающие устройства (ROM), перепрограммируемую ROM (EPROM), электрически перепрограммируемую ROM (EEPROM). Таймеры включают и часы реального времени, и таймеры прерываний. Средства I/O включают последовательные порты связи, параллельные порты (I/O линии), аналого-цифровые преобразователи (A/D), цифроаналоговые преобразователи (D/A), драйверы жидкокристаллического дисплея (LCD) или драйверы вакуумного флуоресцентного дисплея (VFD). Встроенные устройства обладают повышенной надежностью, поскольку они не требуют никаких внешних электрических цепей.
Применение микроконтроллеров в технике очень актуально. Так как они существенно ускоряют работу поставленной им задачи. Отсюда и важность их изучения и применения в устройствах.
В ходе работы микроконтроллер считывает команды из памяти или порта ввода и исполняет их. Что означает каждая команда, определяется системой команд микроконтроллера. Сиситема команд заложена в архитектуре микрконтроллера и выполнение кода команды выражается в проведении внутренними элементами микросхемы определенных микроопераций.
Микроконтроллеры
позволяют гибко управлять
Микроконтроллеры, как правило, не работает в одиночку, а запаивается в схему, где, кроме него, подключаются экраны, клавиатурные входы, различные датчики и т.д.
Обычно память в микроконтроллерах составляет от 2 до 128 Кб. Если меньше, то писать приходится на ассемблере или Форте, если есть возможность, то используют специальные версии Бейсика, Паскаля, но в основном – Си. Прежде чем окончательно запрограммировать микроконтроллер, его тестируют в эмуляторах – программных или аппаратных.
Микросхема или микроконтроллерный чип реализует на одном кристалле процессор и интерфейсные схемы.
Самодостаточный чип, который содержит практически всё, чтобы этого хватало для построения законченного изделия и есть пример типового микроконтроллера. Например, наручные электронные часы или часы-будильник, имеют внутри микроконтроллер, который реализует все функции такового устройства. Отдельные периферийные устройства подключаются непосредственно к ножкам микросхемы микроконтроллера, либо совместно используются дополнительные элементы или микросхемы малой либо средней степени интеграции.
Микроконтроллеры широко используются в изделиях, которые содержат всю систему целиком исключительно в одной миниатюрной микросхеме, часто называемой микросборкой. Например, «чиповая» кредитная карточка содержит микроконтроллер внутри в пластиковой основе. Таблетка домофона так же внутри себя содержит микроконтроллер. И примеров использования и применения микроконтроллеров настолько обширен в современном мире, что легко обнаружить наличие контроллера в любом интеллектуальном устройстве от детской игрушки до беспроводной гарнитуры сотового телефона.
Микроконтроллер ATtiny2313
Микросхема ATtiny2313 представляет собой восьмиразрядный микроконтроллер с внутренней программируемой Flash-памятью размером 2 Кбайт. Микроконтроллер использует AVR® RISC архитектуру. AVR - это высокое быстродействие и специальная RISC-архитектура с низким потреблением. Ядро AVR имеет большой набор инструкции для работы с 32 регистрами общего назначения. Все 32 регистра непосредственно связаны с арифметико-логическим устройством (ALU), которое позволяет выполнять одну команду для двух разных регистров за один такт системного генератора. Такая архитектура позволила достигнуть производительности в десять раз большей, чем у традиционных микроконтроллеров, построенных по CISC-технологии.
Назначение выводов микросхемы ATtiny2313 приведено на рисунке 3.
Микросхема ATtiny2313 имеет следующие особенности:
- 2 Кбайт системной программируемой Flash-памяти программ;
- 128 байт EEPROM;
- 128 байт SRAM (ОЗУ);
- 18 линий ввода—вывода (I/O);
- 32 рабочих регистра;
- однопроводной интерфейс для внутрисхемной отладки;
- два многофункциональных
таймера/счетчика с функцией
- поддержка внешних и внутренних прерывании; последовательный программируемый USART-порт;
- универсальный последовательный интерфейс с детектором начала передачи;
- программируемый
сторожевой таймер с
- три программно
изменяемых режима энергосбереж
- три вида корпусов: PDIP — 20 контактов; SOIC — 20 контактов; QFN/MLF — 20 контактных площадок;
- напряжения питания: 2,7 — 5,5 В;
- диапазон частот тактового генератора ATtiny2313: 0—10 МГц при напряжении 2,7—5,5 В; 0—20 МГц при напряжении 4,5—5,5 В.
- ток потребления в активном режиме: 1 МГц, 1,8 В: 230 мкА; 32 кГц, 1,8 В: 20 мкА (с внутренним генератором).
- ток потребления в режиме низкого потребления: не более 0,1 мкА при напряжении 1,8 В.
В режиме Idle происходит приостановка центрального процессора, остальные системы продолжают работать. Выход из этого режима возможен как по внешнему прерыванию, так и по внутреннему. Например, при переполнении таймера.
В режиме Power Down сохраняется содержимое регистров, но приостанавливается работа внутреннего генератора и отключаются все остальные функции микросхемы. Выход из режима возможен по внешнему прерыванию или после системного сброса. Такое решение позволяет совмещать быстрый старт с низким энергопотреблением.
Микросхема изготовлена с использованием уникальной высокоточной технологии фирмы Atmel. Внутренняя Flash-память программ может быть перепрограммирована при помощи ISP-интерфейса без извлечения микроконтроллера из платы. Объединение 8-разрядного RISC-процессора внутрисистемной перепрограммируемой Flash-памятью на одном кристалле делают микросхему ATtiny2313 мощным средством, которое обеспечивает очень гибкие и недорогие решения многих прикладных задач управления.
Для микросхемы ATtiny2313, как и всех остальных микросхем серии AVR, существует полный набор документации и инструментальных программ:
- компиляторы с языка С;
- макроассемблеры;
- программные отладчики/имитаторы;
- отладочные комплекты.
Рисунок 3. Назначение выводов микросхемы ATtiny2313.
За основу мы возьмем именно этот микроконтроллер, так как для нашей задачи особо высокопроизводительного микроконтроллера не требуется, а эта модель полностью соответствует нашим требованиям, а также она имеет многие преимущества и особенности, описанные выше.
Принципиальная схема устройства переключения новогодних гирлянд на микроконтроллере Attiny 2313
Данное устройство управляет 13 светодиодами, подключенными к портам микроконтроллера. В качестве микроконтроллера используется МК фирмы ATMEL: Attiny2313. Благодаря использованию внутреннего генератора, выводы 4 и 5 задействованы как дополнительные порты микроконтроллера PA0,PA1. Схема обеспечивает выполнение 12 программ эффектов, 11 из которых - индивидуальные комбинации, а 12-тая программа – последовательный однократный повтор предыдущих эффектов. Переключение на другую программу осуществляется нажатием на кнопку SB1. Программы эффектов включают в себя и бегущий одинарный огонь, и нарастание огня, и бегущую тень и многое другое.
Устройство имеет возможность регулировки скорости смены комбинаций при выполнении программы, которая осуществляется нажатием на кнопки: SB2 – увеличение скорости и SB3 – уменьшение скорости при условии, что переключатель SA1 находиться в положении “Скорость программы”. Также имеется возможность регулировать частоту горения светодиода (от стабилизированного свечения до легкого мерцания), которая осуществляется нажатием на кнопки: SB2 – уменьшение (до мерцания) и SB3- увеличение при условии, что переключатель SA1 находиться в положении “Частота мерцания”. У переключателя SA2 замкнутое положение соответствует режиму регулировки скорости выполнения программ, а разомкнутое - режиму регулировки частоты горения светодиодов.
Порядок
нумерации светодиодов в схеме
соответствует их порядку
Для схемы подойдут любые светодиоды с напряжением питания 2-3 вольта, резисторами R1-R17 можно регулировать яркость свечения светодиодов.
ВЫВОД
Трудно представить сферу современной деятельности человека, где не использовались бы микроконтроллеры. Телефоны, телевизоры, жидкокристаллические мониторы, кондиционеры, холодильники, новогодние гирлянды, компьютеры и многое другое не могут работать без микроконтроллеров. Микроконтроллеры намного лучше своих предшественников: ламп и полупроводников. Они гораздо меньших размеров и обладают большей производительностью.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Белов
А.Б. Конструирование
2. Предко
М. Руководство по
Пер. с англ. под ред.И. И. Шагурина и С.Б. Лужанского - М.: Постмаркет, 2001. - 416 с.
3. Предко М. Руководство по микроконтроллерам. Том 2. / Пер. с англ. под ред.И. И. Шагурина и С.Б. Лужанского - М.: Постмаркет, 2001. - 488 с.
4. Вуд А. Микропроцессоры в вопросах и ответах. / Пер. с англ. под ред. Д.А. Поспелова. - М.: Энергоатомиздат. 1985. - 184 с.
5. Уильямс Г.Б.
Отладка микропроцессорных
6. Угрюмов Е.П. Цифровая схемотехника. - Спб.: БВХ - Санкт-Петербург, 2000. - 528 с.
7. Алексенко А.Г., Шагурин И.И. Микросхемотехника. - М.: Радио и связь, 1990. - 496 с.
8. Бродин Б.В., Шагурин И.И. Микроконтроллеры: Справочник. - М.: ЭКОМ, 1999. - 395 с.
9. Программируемые
логические ИМС на КМОП-
10. Соловьев В.В., Васильев А.Г. Программируемые логические интегральные схемы и их применение. - Мн.: Беларуская наука, 2008. - 270 с.
11. Лаптев В. Цифровой измеритель температуры на базе AVR микроконтроллера и RC-цепочки. - Электронные компоненты, 2001. №2, с.46 - 49.