Двойственные оценки и их влияние на функционал

Автор работы: Пользователь скрыл имя, 02 Февраля 2013 в 16:07, контрольная работа

Описание работы

Выбор наилучшего решения предполагает наличие некоторого критерия оптимальности, позволяющего оценить эффективность принятых решений. В экономике такие задачи возникают при практической реализации принципа оптимальности в планировании и управлении, при этом в качестве критерия оптимальности могут выступать максимум прибыли, минимум себестоимости, минимум трудовых затрат и др. Если записать критерий оптимальности в виде математической функции , то эта функция называется целевой функцией (функция цели, функционал).

Содержание работы

I. Теоретическая часть…………………………………………………………1
1.1. Двойственные оценки как мера влияния ограничений
на функционал………………………………………………………………....1
II. Практическая часть…………………………………………………………2
2.1. Решение задачи графическим методом………………………………….2
2.2. Решение задачи на основе анализа временного ряда………………….12
2.3. Решение задачи на управление запасами………………………………23
Список использованной литературы……………

Файлы: 1 файл

Контроша.doc

— 2.28 Мб (Скачать файл)

5Х1 +3Х2 = 25 000    


Х1 + Х2 =  6000 


     5Х1 +3Х2 = 25 000      

Х1 = 6000 – Х2

     30000 – 5Х2 + 3Х2 = 25000


Х1 = 6000 – Х2


  Х2 = 2500       

  Х1 = 6000 – Х2

  Х2 = 2500


  Х1 = 3500

5. Подставляем найденные значения в линейную функцию

Значение целевой функции  в  точке С (3500; 2500) равно:

max f(x) = 1,1 * 3500 + 0,9 * 2500 = 3850 + 2250 = 6100.

6. Нахождение значения целевой функции в точке С посредством решение задач в Microsoft Excel

    • Заносим исходные данные: стоимость акций и прибыль, которую сможем получить при покупке определенного количества акций

Рис. 2 Исходные данные

    • Заносим целевую функцию Меню-Вставка-Функции-СУММПРОИЗВ

Рис.3 Целевая функция

    • Заполняем поле ограничения (левая часть):

- для ячейки D10 с помощью Меню-Вставка-Функции-СУММПРОИЗВ

Рис. 4 Заполнение поля ограничение для ячейки D10

 

 

 

- для ячейки D11

Рис. 5 Заполнение поля ограничение  для ячейки D11

- для ячейки D12

Рис. 6 Заполнение поля ограничение для ячейки D12

 

- для ячейки D13


 

 

Рис. 7 Заполнение поля ограничение  для ячейки D13

 

 

 

 

 

    • С помощью «Поиска решений» (Меню-Сервис) находим значения для Дикси-Е и для Дикси-В и прибыль, которую мы получим в результате покупки двух видов акций

Рис.8 Поиск решения

 

    • В итоге мы получаем значения для Дикси-Е и для Дикси-В

Рис.9 Значение для переменных Дикси-Е и для Дикси-В

 

Ответ: чтобы обеспечить оптимальную прибыль от инвестиций необходимо купить: акций Дикси-Е - 3500 шт. и акций Дикси-В - 2500 шт., при этом прибыль от двух видов купленных акций составит – 6100 долл.; Если решать задачу на min то надо двигаться по линии вектора-градиента в обратном направлении линии уровня и min f(x) = 0 достигается при, Х1 =0; Х2 = 0.

 

 

 

 

2.2. Решение задачи на основе анализа  временного ряда

В течение девяти последовательных недель фиксировался спрос Y(t) (млн. руб.) на кредитные ресурсы финансовой компании. Временной ряд Y(t) этого показателя приведен в таблице:

                                                                                          Таблица 2

Номер

Варианта 

Номер наблюдения (t=1,2,…,9)

1

2

3

4

5

6

7

8

9

6

12

15

16

19

17

20

24

25

28


 

Требуется:

1) проверить наличие аномальных наблюдений.

2) построить линейную модель Ŷ(t) = , параметры которой оценить МНК (Ŷ(t) - расчетные, смоделированные значения временного ряда);

3) оценить адекватность построенных моделей, используя свойства независимости остаточной компоненты, случайности и соответствия нормальному закону распределения (при использовании R/S-критерия взять табулированные границы 2,7 - 3,7);

4) оценить точность моделей на основе использования средней относительной ошибки аппроксимации;

5) по построенной модели осуществить прогноз спроса на следующие две недели (доверительный интервал прогноза считать при доверительной вероятности р = 70%);

6) фактические значения показателя, результаты моделирования и прогнозирования представить графически.

Вычисления  провести с одним знаком в дробной  части. Основные промежуточные результаты вычислений представить в таблицах (при использовании компьютера представить соответствующие листинги с комментариями).

 

 

Решение:

  1. Проверить наличие аномальных наблюдений.

 Для выявления аномальных уровней временного ряда используем метод Ирвина, который предполагает использование следующей формулы:

 

, где

 

sу - среднеквадратическое отклонение рассчитывается с использованием формул:

 

Находим:

 

= = = = 5,2

λ2 = = 0,57

λ3 = = 0,19

λ4 = = 0,57

λ5 = = 0,38

λ6 = = 0,57

λ7 = = 0,77

λ8 = = 0,19

λ9 = = 0,57

Расчетные значения λ2, λ3, и т.д. сравниваются с табличным значением критерия Ирвина λα, и если оказываются больше табличных, то соответствующее значение уt уровня ряда считается аномальным. Значение критерия Ирвина для уровня значимости α = 0,05, то есть с 5%-ной ошибкой,

λтабл=1,5.

В результате получаем следующую  таблицу:


 
 
 
Рис. 10 Нахождение аномальных наблюдений

 

Аномальных наблюдений во временном ряду нет, так как  расчетные значения λ t меньше табличного λтабл= 1,5 .

 

2. Построить линейную модель Y(t) = , параметры которой оценить МНК (Y(t) - расчетные, смоделированные значения временного ряда).

а) Построим линейную модель вида Y(t) = a0 + a1t по методу наименьших квадратов. Коэффициенты а0 и а1 линейной модели найдем из решения нормальной системы уравнений:

Известно, что 

где:

 

Находим: 

 

 

 

 

Находим:

 


 

 


Коэффициент а1=1,85 уравнения показывает, что в течение 9 последовательных недель спрос на кредитные ресурсы финансовой компании увеличивается в среднем на 1,85 млн. рублей.

Таким образом, получаем следующие данные:


 

 

 

 

 

 

 

Рис. 11 Построение линейной модели с помощью МНК

 

 

б) Оценим параметры модели (с помощью Анализ данных)

Построим линейную модель вида Y(t) = a0 + a1t с помощью однопараметрической модели регрессии Y(t). Для проведения регрессионного анализа выполняем следующие действия:

    • Выбрать команду Сервис →Анализ данных;
    • В диалоговом окне выбрать инструмент Регрессия (Рис.4), затем ОК;
    • В диалоговом окне Регрессия в поле Входной интервал Y вводится адрес одного диапазона ячеек, который представляет зависимую переменную. В поле Входной интервал X вводится адрес диапазона, который содержит значения независимой переменной t (Рис. 5);
    • Т.к. заголовки столбцов выделены тоже, то устанавливается флажок Метки;
    • Выбрать параметры вывода;
    • В поле График подбора поставить флажок;
    • В поле Остатки поставить необходимые флажки и нажать кнопку ОК.

                                 Рис. 12 Анализ данных

                     Рис. 13 Регрессия

Используя пункт «Анализ  данных» Регрессия получим коэффициенты уравнения регрессии согласно расчетам следующие: a0 = 10,3 a1 = 1,85.

 Уравнение регрессии зависимости уt (спроса на кредитные ресурсы финансовой компании) от времени t имеет вид:

Y(t) = 10,3 + 1,85t.

Рис. 14 Результат регрессионного анализа

 

б) Построим график эмпирического  и смоделированного рядов:


 

Рис. 15 График эмпирического и смоделированного рядов

 

 

 

3. Оценить адекватность построенных моделей, используя свойства независимости остаточной компоненты, случайности и соответствия нормальному закону распределения (при использовании R/S-критерия взять табулированные границы 2,7 - 3,7).

Модель является адекватной, если математическое ожидание значений остаточного ряда близко или равно нулю и если значения остаточного ряда случайны, независимы и подчинены нормальному закону распределения.

  • Проверка равенства нулю математического ожидания уровней ряда остатков.

В моем случае = 0, поэтому гипотеза о равенстве математического ожидания значений остаточного ряда нулю выполняется.

 

Рис. 7 Проверка равенства нулю математического ожидания уровней ряда остатков

  • При проверке независимости (отсутствие автокорреляции) определяется отсутствие в ряду остатков систематической составляющей, например, с помощью d-критерия Дарбина—Уотсона по формуле. Численное значение коэффициента равно   

d`= 4 – d

 

где:

    1. = 0,99-(-0,16)=
    2. = 0,14-0,99=
    3. = 1,29-0,14=
    4. = -2,56-1,29=
    5. = -1,41-(-2,56)=
    6. = 0,74-(-1,41)=
    7. = -0,11-0,74=
    8. = 1,04-(-0,11)=

 

          d`= 4 – 2,03=1,97

 
Рис. 8 Проверка независимости

 

Если d  попадает в интервал от d2 до 2 (для линейной модели при 10 наблюдениях можно взять в качестве критических табличных уровней величины d1 = 1,08, d2 = 1,36),  это говорит об отсутствии в модели автокорреляции  и модель адекватна по данному признаку.

 

 

  • Проверку случайности уровней ряда остатков проведем на основе критерия поворотных точек:

Критерий  случайности отклонений от тренда при уровне вероятности 0,95 имеет вид:

6 > 2

Число поворотных точек = 6;

6>2 – неравенство  выполняется, следовательно, свойство  случайности выполняется.

Рис. 9 Проверка случайности уровней ряда остатков

 

 

 

 

 

 

    • Соответствие ряда остатков нормальному закону распределения определим при помощи RS-критерия:

 (для N=10 и 5%-го уровня значимости границы критерия (2,7 – 3,7)), 3,03 попадает в указанный интервал, следовательно, свойство нормальности распределения выполняется.

Вывод: модель статистически адекватна (выполняются все условия из четырех).

4. Оценить точность моделей на основе использования средней относительной ошибки аппроксимации

Средняя относительная  ошибка:

 

 

Информация о работе Двойственные оценки и их влияние на функционал