Классификация видов моделирования систем

Автор работы: Пользователь скрыл имя, 22 Января 2014 в 18:42, реферат

Описание работы

При проектировании и эксплуатации систем возникают многочисленные задачи, требующие оценки количественных и качественных закономерностей процессов их функционирования, проведения структурного, алгоритмического и параметрического синтеза. Решение этих проблем невозможно без использования математического моделирования, что обусловлено особенностями больших систем, такими как сложность структур, стохастичность связей между элементами и внешней средой, неоднозначность алгоритмов поведения, большое количество параметров и переменных, неполнота и недетерминированность исходной информации.
Математическое моделирование позволяет существенно уменьшить время проектирования, во многих случаях позволяет найти оптимальное решение, исключить метод натурных проб и ошибок, перейти к параллельному процессу проектирования.

Файлы: 1 файл

Реферат Есаулов.doc

— 230.00 Кб (Скачать файл)

1.2. Принципы подхода в моделировании систем

В моделировании систем используются классический (индуктивный) и системный (дедуктивный) подходы [8].

Классический подход рассматривает исследуемую систему  с точки зрения выполняемых функций (функциональный подход) и предполагает создание модели путём перехода от частного к общему слиянием её отдельных компонент, разрабатываемых отдельно.

Процесс синтеза модели на основе классического подхода  схематично представлен на рис. 1.2 и  включает следующие этапы:

Декомпозиция реальной системы, подлежащей моделированию, на отдельные подсистемы.

 

 

  1. Выбор исходных данных для моделирования, включающих:
        • назначение;
        • условия работы;

        • внешнюю среду;

        • ограничения.

  1. Постановка целей, отображающих отдельные стороны процесса моделирования системы.
  2. Формирование на базе целей и исходных данных компонент будущей модели.
  3. Совокупность компонент объединяется в модель. 

Рис. 1.2. Процесс синтеза  модели на основе классического подхода:

Д – исходные данные; Ц – цели; К – компонента модели 

Таким образом, разработка модели на основе классического подхода  означает суммирование отдельных компонент  в единую модель, причём каждая из компонент решает свои собственные задачи и изолирована от других частей модели. Поэтому классический подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно независимое рассмотрение отдельных сторон функционирования реального объекта.

Системный подход рассматривает  исследуемую систему в виде целенаправленного  множества взаимосвязанных элементов (структурный подход) и предполагает создание модели путём перехода от общего к частному, когда в основе рассмотрения лежит цель, при этом исследуемый объект выделяется из окружающей среды.

Процесс синтеза модели на основе системного подхода схематично представлен на рис. 1.3 и включает следующие этапы:

На основе цели функционирования системы, которая определяется вопросами, на которые исследователь хочет получить ответы с помощью модели, и исходных данных, включающих назначение модели, условия работы системы, внешнюю среду для системы и накладываемые ограничения, формируются требования к модели системы.

  1. Определение подсистем модели на базе сформированных требований.
  2. Подбор элементов подсистем модели на основе данных для их реализации.
  3. Выбор составляющих элементов будущей модели на основе сформированных критериев выбора. 
  4. Получившаяся таким образом модель является интегрированным целым. 
  5.  
    Рис. 1.3. Процесс синтеза модели на основе системного подхода:

Ц – цель моделирования; Д – исходные данные; КВ – критерии выбора

Системный подход позволяет  решить проблему построения модели сложной  системы с учетом всех факторов и  взаимосвязей, пропорциональности их значимости на всех этапах исследования системы и построения модели. Системный  подход означает, что каждая система является интегрированным целым даже тогда, когда она состоит из отдельных разобщённых подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причём это рассмотрение при разработке начинается с главного: формулировки цели функционирования. В настоящее время при анализе и синтезе больших систем получил распространение системный подход, который позволяет учитывать сложные стохастические связи в системе и взаимодействие с внешней средой. Модель в этом случае создается под поставленную проблему, а моделирование заключается в решении проблемы цели, проблемы построения модели, проблемы работы с моделью. Для правильно выбранной модели характерным является то, что она выявляет лишь те закономерности, которые нужны исследователю, и не рассматривает свойства системы, не существенные для данного исследования.

1.3. Классификация видов моделирования систем

В основе классификации  видов моделирования систем лежат  различные признаки, такие как степень полноты модели; 

  • характер изучаемых процессов в системе; 
  • форма представления системы. 

Классификация видов  моделирования систем приведена  на рис. 1.4 [8].

Основой моделирования  является теория подобия, из которой следует, что абсолютное подобие может иметь место лишь при замене одного объекта другим, точно таким же. При моделировании абсолютное подобие не имеет места, и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования системы. Поэтому в качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные.

Рис. 1.4. Классификация видов моделирования  систем

В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделированияхарактерно неполное подобие модели изучаемому объекту. При приближенном моделировании лежит приближённое подобие, при котором некоторые стороны функционирования реальной системы не учитываются совсем.

B зависимости от характера  изучаемых процессов в системе  все виды моделирования могут  быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. 

Детерминированное моделирование отображает детерминированные процессы, т.e. процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. 

Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, a динамическое моделирование отражает поведение объекта во времени. 

Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделированиепозволяет отразить непрерывные процессы в системах, a дискретно-непрерывное моделирование используется для случаев, когда хотят выделять наличие как дискретных, так и непрерывных процессов.

B зависимости от формы  представления объекта (системы)  можно выделить мысленное и  реальное моделирование.

Мысленное моделирование – это моделирование объектов без их практической реализации. Реальное моделирование заключается в проведении исследования на реальном объекте целиком или его части.

Мысленное моделирование  часто является единственным способом моделирования объектов, которые  либо практически не реализуемы в  заданном интервале времени, либо существуют вне условий для их физического создания. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического.

Наглядное моделирование основывается на базе представлений человека о реальных объектах и подразделяется на гипотетическое, аналоговое и макетирование.

B основу гипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний об объекте. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей. 

Аналоговое моделирование основывается на применении аналогий различных уровней.

Макетирование основывается на создании мысленных макетов и используется в тех случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования. 

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков или символов. Символическое моделирование подразделяется на языковое и знаковое.

Языковое моделирование основывается на фиксированном наборе понятий. В основе языкового моделирования лежит тезаурус – словарь, который очищен от неоднозначности, т.е. в нём каждому слову может соответствовать лишь единственное понятие.

При знаковом моделировании введены условные обозначения отдельных понятий, т.е. знаки, а также определённые операции между этими знаками. С помощью знаков можно составлять отдельные цепочки из слов и предложений, а использование операций позволяет получать описание реальных объектов.

Для исследования характеристик  процесса функционирования любой системы  математическими методами должна быть проведена формализация этого процесса, т.е. построена математическая модель. 

Важное место занимает математическое моделирование, представляющее собой процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получить характеристики рассматриваемого реального объекта. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения. Математическое моделирование включает в себя аналитическое, имитационное и комбинированное.  

Аналитическое моделирование основывается на косвенном описании реального объекта с помощью набора математических выражений, которые образуют аналитическую модель. Компьютер при аналитическом моделировании используется в качестве вычислителя.

Для аналитического моделирования  характерно то, что процессы функционирования исследуемой системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т.п.) или логических условий. Аналитическая модель может быть исследована следующими методами:  
аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик;

  • численным, когда, не умея решать уравнения в общем виде, стремятся получить численные результаты при конкретных начальных данных;
  • качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, устойчивость).

Наиболее полное исследование процесса функционирования системы  можно провести, если известны явные  зависимости, связывающие искомые  характеристики с начальными условиями, параметрами и переменными системы. Однако такие зависимости удаётся получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности.

Имитационное моделирование основано на прямом описании моделируемого объекта, используя структурное подобие объекта и модели, т.е. каждому существенному, с точки зрения решаемой задачи, элементу объекта ставится в соответствие элемент модели.

При имитационном моделировании  в качестве имитационной модели выступает алгоритм, воспроизводящий процесс функционирования исследуемой системы, при этом имитируются элементарные явления составляющего процесса, с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определённые моменты времени, дающие возможность оценить характеристики системы. Компьютер при имитационном моделировании служит имитатором исследуемой системы
Основным преимуществом  имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Метод имитационного моделирования позволяет решать задачи анализа больших систем, включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения параметров системы. Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему с заданными характеристиками при определённых ограничениях, которая является оптимальной по выбранным критериям оценки эффективности.

Комбинированное (аналитико-имитационное) моделирование при анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится декомпозиция процесса функционирования объекта на составляющие подпроцессы, и для тех из них, где это возможно, используются аналитические модели, а для остальных подпроцессов строятся имитационные модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности.

При реальном моделировании используется возможность исследования различных характеристик либо на реальным объекте целиком, либо на его части. Отличие эксперимента от реального протекания процесса заключается в том, что в нём могут появиться отдельные критические ситуации. В ходе эксперимента вводятся новые факторы и возмущающие воздействия в процессе функционирования объекта.

Реальное моделирование  подразделяется на натурное и физическое.

Натурным моделированием называют проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. При функционировании объекта в соответствии с поставленной целью удаётся выявить закономерности протекания реального процесса. Разновидности натурного моделирования, как комплексные испытания, производственный эксперимент и натурный эксперимент, обладают высокой степенью достоверности.

Информация о работе Классификация видов моделирования систем