Контрольная работа по "Эконометрике"

Автор работы: Пользователь скрыл имя, 26 Марта 2013 в 19:59, контрольная работа

Описание работы

ЗАДАЧА 1
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпускаемой продукции (Y, млн. руб.) от объема капиталовложений (X, млн. руб.)
Требуется:
Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию углового коэффициента регрессии.
Вычислить остатки; найти остаточную сумму квадратов; определить стандартную ошибку регрессии; построить график остатков.
Проверить выполнение предпосылок метода наименьших квадратов.
Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (уровень значимости a=0,05).
Вычислить коэффициент детерминации R2; проверить значимость уравнения регрессии с помощью F-критерия Фишера (уровень значимости a=0,05); найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
Осуществить прогнозирование значения показателя Y при уровне значимости a=0,1, если прогнозное значения фактора Х составит 80 % от его максимального значения.
Представить графически: фактические и модельные значения Y, точки прогноза.
Составить уравнения нелинейной регрессии:
логарифмической;
степенной;
показательной.
Привести графики построенных уравнений регрессии.
Для указанных моделей найти коэффициенты детерминации и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.

Файлы: 1 файл

эконометрика.doc

— 439.00 Кб (Скачать файл)

,

а ее ранг матрицы равен 2. Значит, достаточное условие идентификации для данного уравнения выполнено. Второе уравнение считается идентифицируемым.

В третьем уравнении три эндогенные переменные: y1, y2 и y3 (H=3). В нем отсутствует одна экзогенная переменная x1 и x2 (D=2). Необходимое условие идентификации выполнено. Для проверки на достаточное условие составим матрицу из коэффициентов при переменных x1 и x2, отсутствующих в данном уравнении, но имеющихся в системе:

 

 

 

 

Уравнения, из которых взяты коэффициенты при переменных

Переменные

x1

x2

1

a11

a12

2

0

0


 

Определитель матрицы не равен нулю:

,

а ее ранг матрицы равен 2. Значит, достаточное условие идентификации для данного уравнения выполнено. Третье уравнение считается идентифицируемым.

Таким образом, первое уравнение заданной системы идентифицируемо, второе — идентифицируемо, а третье — идентифицируемо. Если хотя бы одно уравнение системы неидентифицируемо, то вся система считается неидентифицируемой. Данная система является идентифицируемой и имеет статистическое решение.

 

Задача 2в

По данным таблицы для своего варианта, используя косвенный метод наименьших квадратов, построить структурную форму модели вида:

 

Вариант

n

у1

у2

х1

х2

9

1

25,1

21,8

8

7

2

41,7

33,8

10

14

3

12,5

12,5

7

1

4

25,9

23,4

7

8

5

41,7

36,0

5

17

6

9,4

11,4

2

2


 

РЕШЕНИЕ

С помощью табличного процессора EXCEL строим два приведенных уравнения системы одновременных уравнений регрессии (меню «Сервис» ® «Анализ данных…» ® «Регрессия»):

 

 

Данные уравнения образуют приведенную форму системы одновременных уравнений регрессии:

Коэффициенты приведенной формы имеют следующие значения: d10»3,06; d11»1,06; d12»1,97; d20»7,43; d21»0,49 и d22»1,54 (см. прил.).

Таким образом, приведенная форма системы уравнений имеет вид:

Определим коэффициенты структурной формы системы уравнений

Структурные коэффициенты определяются по формулам:

;

;

;

;

;

.

Окончательно структурная  форма системы одновременных уравнений регрессии примет вид:

 

 

ПРИЛОЖЕНИЕ: компьютерная распечатка на 1 листе.


Информация о работе Контрольная работа по "Эконометрике"