Автор работы: Пользователь скрыл имя, 26 Марта 2013 в 19:59, контрольная работа
ЗАДАЧА 1
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпускаемой продукции (Y, млн. руб.) от объема капиталовложений (X, млн. руб.)
Требуется:
Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию углового коэффициента регрессии.
Вычислить остатки; найти остаточную сумму квадратов; определить стандартную ошибку регрессии; построить график остатков.
Проверить выполнение предпосылок метода наименьших квадратов.
Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (уровень значимости a=0,05).
Вычислить коэффициент детерминации R2; проверить значимость уравнения регрессии с помощью F-критерия Фишера (уровень значимости a=0,05); найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
Осуществить прогнозирование значения показателя Y при уровне значимости a=0,1, если прогнозное значения фактора Х составит 80 % от его максимального значения.
Представить графически: фактические и модельные значения Y, точки прогноза.
Составить уравнения нелинейной регрессии:
логарифмической;
степенной;
показательной.
Привести графики построенных уравнений регрессии.
Для указанных моделей найти коэффициенты детерминации и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.
а ее ранг матрицы равен 2. Значит, достаточное условие идентификации для данного уравнения выполнено. Второе уравнение считается идентифицируемым.
В третьем уравнении три эндогенные переменные: y1, y2 и y3 (H=3). В нем отсутствует одна экзогенная переменная x1 и x2 (D=2). Необходимое условие идентификации выполнено. Для проверки на достаточное условие составим матрицу из коэффициентов при переменных x1 и x2, отсутствующих в данном уравнении, но имеющихся в системе:
Уравнения, из которых взяты коэффициенты при переменных |
Переменные | |
x1 |
x2 | |
1 |
a11 |
a12 |
2 |
0 |
0 |
Определитель матрицы не равен нулю:
а ее ранг матрицы равен 2. Значит, достаточное условие идентификации для данного уравнения выполнено. Третье уравнение считается идентифицируемым.
Таким образом, первое уравнение заданной системы идентифицируемо, второе — идентифицируемо, а третье — идентифицируемо. Если хотя бы одно уравнение системы неидентифицируемо, то вся система считается неидентифицируемой. Данная система является идентифицируемой и имеет статистическое решение.
Задача 2в
По данным таблицы для своего
варианта, используя косвенный метод наим
Вариант |
n |
у1 |
у2 |
х1 |
х2 |
9 |
1 |
25,1 |
21,8 |
8 |
7 |
2 |
41,7 |
33,8 |
10 |
14 | |
3 |
12,5 |
12,5 |
7 |
1 | |
4 |
25,9 |
23,4 |
7 |
8 | |
5 |
41,7 |
36,0 |
5 |
17 | |
6 |
9,4 |
11,4 |
2 |
2 |
РЕШЕНИЕ
С помощью табличного процессора EXCEL строим два приведенных уравнения системы одновременных уравнений регрессии (меню «Сервис» ® «Анализ данных…» ® «Регрессия»):
Данные уравнения образуют приведенную форму системы одновременных уравнений регрессии:
Коэффициенты приведенной формы имеют следующие значения: d10»3,06; d11»1,06; d12»1,97; d20»7,43; d21»0,49 и d22»1,54 (см. прил.).
Таким образом, приведенная форма системы уравнений имеет вид:
Определим коэффициенты структурной формы системы уравнений
Структурные коэффициенты определяются по формулам:
;
;
;
;
;
.
Окончательно структурная форма системы одновременных уравнений регрессии примет вид:
ПРИЛОЖЕНИЕ: компьютерная распечатка на 1 листе.