Автор работы: Пользователь скрыл имя, 05 Декабря 2013 в 15:09, курсовая работа
В данной курсовой работе я рассматриваю эконометрическое моделирование финансового рынка. Основной задачей эконометрического моделирования является дать количественное выражение взаимосвязей экономических процессов и явлений. Целью эконометрического моделирования является
1) прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы;
2) имитация различных возможных сценариев социально-экономического развития анализируемой системы (многовариантные сценарные расчеты, ситуационное моделирование).
Введение……………………………………………………………………….…….2
Глава 1. Основы понятия финансовый рынок……………………………….…...3
1.1. Денежный рынок ……………………………………………………….……....3
1.2. Рынок капиталов ……………………………………………………………….4
1.2.1. Рынок облигаций…………………………………………………………….5
1.2.2. Рынок акций…………………………………………………………………..5
1.3. Дериватив……………………………………………………………………….6
1.4. Валютный рынок Форекс………………………………………………………7
Глава 2. Временные ряды………………………………………………….……….10
2.1. Моделирование тенденции временного ряда…….………………………....10
2.2. Задачи анализа временных рядов. Первоначальная обработка временных рядов…………………………………………………………………………………11
2.3. Методы нахождения параметров уравнения тренда………………………...12
2.4. Экстраполяция тенденции как метод прогнозирования……………………14
Глава 3. Метод временного ряда на примере продажи акций …………………..17
Заключение………………………………………………………………………….24
Литература…………………………………………………………………………..25
Существует несколько способов определения типа тенденции. К числу наиболее распространенных способов относятся качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни и тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.
Выбор наилучшего уравнения в случае, когда ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации и средней ошибки аппроксимации. Этот метод легко реализуется при компьютерной обработке данных.
2.2. Задачи анализа временных рядов. Первоначальная обработка временных рядов
Основные задачи анализа временных рядов. Базисная цель статистического анализа временного ряда заключается в том, чтобы по имеющейся траектории этого ряда:
Успешное решение перечисленных задач, обусловленных базовой целью статистического анализа временного ряда, является основой для достижения конечных прикладных целей исследования и, в первую очередь, для решения задачи кратко- и среднесрочного прогноза значений временного ряда. Приведем кратко основные элементы эконометрического анализа временных рядов.
Временные ряды отражают тенденцию изменения параметров системы во времени, поэтому входным параметром х является момент времени.
Выходной параметр y называется уровнем ряда. В случае отсутствия ярко выраженных изменений в течение времени, общая тенденция сохраняется. Ряд можно описать уравнением вида
YT = F (t) + ET ,
где
F (t) – детерминированная функция времени.
ET – случайная величина
Во временных рядах проводится операция анализа и сглаживания тренда, который отражает влияние некоторых факторов. Для построения тренда применяется МНК-критерий.
Существуют моментальные и интервальные ряды. В моментальных рядах отражаются абсолютные величины, по состоянию на определенный момент времени, а в интервальных – относительные величины (показатель за год, месяц, и т.д.). Исследование данных при помощи рядов позволяет во многих случаях более четко представить детерминированную функцию. При этом рассчитываются базисные и цепные показатели (прирост, коэффициент роста, коэффициент роста, темп роста, темп прироста, и др.). Под базисными показателями понимают, показатели, которые соотносятся к начальному уровню ряда. Цепные показатели относятся к предыдущему уровню.
Прогноз явлений по временным рядам состоит из двух этапов:
Обе проблемы связаны с анализом результатов парных экспериментов. В отличие от аппроксимации и интерполяции анализ временных рядов включает в себя методы оценки случайных компонент. Поэтому прогнозирование при помощи временных рядов является более точным.
Исследование рядов имеет
2.3 Методы нахождения параметров уравнения тренда.
Одна из важнейших задач статистики - определение в рядах динамики общей тенденции развития. Основной тенденцией развития называется плавное и устойчивое изменение уровня во времени, свободное от случайных колебаний. Задача состоит в выявлении общей тенденции в изменении уровней ряда, освобожденной от действия различных факторов.
Изучение тренда включает два основных этапа:
С этой целью ряды динамики подвергаются обработке методами укрупнение интервалов, скользящей средней и аналитического выравнивания:
Одним из наиболее элементарных способов изучения общей тенденции в ряду динамики является укрупнение интервалов. Этот способ основан на укрупнении периодов, к которым относятся уровни ряда динамики. Например, преобразование месячных периодов в квартальные, квартальных в годовые и т.д.
Выявление общей тенденции ряда динамики можно произвести путем сглаживания ряда динамики с помощью скользящей средней.
Скользящая средняя - подвижная динамическая средняя, которая рассчитывается по ряду при последовательном передвижении на один интервал, то есть сначала вычисляют средний уровень из определенного числа первых по порядку уровней ряда, затем - средний уровень из такого же числа членов, начиная со второго. Таким образом, средняя как бы скользит по ряду динамики от его начала к концу, каждый раз отбрасывая один уровень в начале и добавляя один следующий.
При этом посредством осреднения эмпирических данных индивидуальные колебания погашаются, и общая тенденция развития явления выражается в виде некоторой плавной линии (теоретические уровни). И так, суть метода заключается в замене абсолютных данных средними арифметическими за определенные периоды.
Скользящая средняя обладает достаточной гибкостью, но недостатком метода является укорачивание сглаженного ряда по сравнению с фактическим, что ведет к потери информации. Кроме того, скользящая средняя не дает аналитического выражения тренда.
Период
скользящей может быть четным и нечетным.
Практически удобнее
; ; и т.д.
Полученные средние записываются к соответствующему срединному интервалу.
Особенность
сглаживания по четному числу
уровней состоит в том, что
каждая из численных (например, четырехчленных)
средних относится к
Недостатком
способа сглаживания рядов
Более совершенным
приемом изучения общей тенденции
в рядах динамики является аналитическое
выравнивание. При изучении общей
тенденции методом
Для аналитического выравнивания наиболее часто используются следующие виды трендовых моделей: прямая (линейная), парабола второго порядка, показательная (логарифмическая) кривая, гиперболическая.
Цель аналитического выравнивания - определение аналитической или графической зависимости. На практике по имеющемуся временному ряду задают вид и находят параметры функции, а затем анализируют поведение отклонений от тенденции. Чаще всего при выравнивании используются следующие зависимости; линейная, параболическая и экспоненциальная.
2.4. Экстраполяция тенденции как метод прогнозирования
Основа
большинства методов
Экстраполяция, проводимая в будущее,- это перспектива, а в прошлое,- ретроспектива.
Предпосылки применения экстраполяции:
Экстраполяцию в общем виде можно представить так:
,
где - прогнозируемый уровень; - текущей уровень прогнозного ряда;
Т- срок экстраполяции; - параметр уравнения тренда.
При этом могут использоваться разные методы в зависимости от исходной информации.
Упрощенные
приемы целесообразны при
Для нахождения
интересующего нас
,
где t- срок прогноза; i- номер последнего уровня.
Применение в экстраполяции среднего абсолютного прироста предполагает, что развитие явления происходит по арифметической прогрессии и относится в прогнозировании к классу «наивных» моделей, ибо чаше всего развитие явления следует по иному пути, чем арифметическая прогрессия Т.С. Вместе с тем в ряде случаев этот метод может найти применение как предварительный прогноз, если у исследователя нет динамического ряда: информация дана лишь на начало и конец периода (например, данные одного баланса).
Осуществляется,
когда общая тенденция
,
где - последний уровень ряда динамики; k- средний коэффициент роста.
Экстраполяция дает возможность получить точечное значение прогнозов. Точное совпадение фактических данных и прогнозных точечных оценок, полученных путем экстраполяции кривых, имеет малую вероятность.
Любой статистический
прогноз носит приближенный характер,
поэтому целесообразно
, ,
где - коэффициент доверия по распределению Стьюдента при уровне значимости ; - средняя квадратическая ошибка тренда; k- число параметров в уравнении; - расчетное значение уровня.
Информация о работе Метод временного ряда на примере продажи акций