Автор работы: Пользователь скрыл имя, 22 Декабря 2012 в 12:10, реферат
Действительно, реальное равновесие на рынке возможно лишь при совпадении ожиданий производителей и потребителей, так как на практике равновесие достигается достаточно редко, поскольку в реальной жизни неизбежны экономические кризисы, неполное или неэффективное использование ресурсов. И даже, несмотря на это можно утверждать, что необходимость в балансовом методе очевидна.
Актуальность рассматриваемой темы состоит в том, что мир не стоит на месте, появляются новые отрасли экономики, которые требуют четкого расчета, по взаимодействию их с давно зарекомендовавшими.
ВВЕДЕНИЕ……………………………………………….…....................... 3
1.Общая структура межотраслевого баланса…………………………… 4
2. Статическая модель Леонтьева ………………………………………….. 8
3. Модель равновесных цен………………………………………………… 13
ЗАКЛЮЧЕНИЕ…………………………………………………..…………16
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ………………………17
Можно показать, что при выполнении этих двух условий матрица B = (E - A)-1 существует и если ее элементы неотрицательны. Говорят, что в этом случае матрица прямых затрат А является продуктивной.
Перепишем формулу (1.5):
|
(1.6) |
Матрица В носит название матрицы полных материальных затрат, а ее элементы bij называют коэффициентами полных материальных затрат.
Коэффициент bij показывает, каков должен быть валовый выпуск i-й отрасли для того, чтобы обеспечить выпуск единицы конечного продукта j-й отрасли.
Можно показать, что
|
(1.7) |
Умножим обе части на (E - A):
,
,
,
,
.
Доказано.
Из соотношения (1.7) следует bij ≥ aij, , . Таким образом, коэффициент полных материальных затрат bij, описывающий потребность в выпуске продукции i-й отрасли в расчете на единицу конечного продукта j-й отрасли, не меньше коэффициента прямых материальных затрат aij, рассчитываемого на единицу валового выпуска.
Кроме того, из соотношения (1.7) для диагональных элементов матрицы B следует:
.
3. Модель равновесных цен
Рассмотрим теперь балансовую модель, двойственную к модели Леонтьева – так называемую модель равновесных цен. Пусть, как и прежде, А – матрица прямых затрат, х = (х1 , х2, …, хn)Т – вектор валового выпуска. Обозначим через р = (р1 , р2 , …, рn)Т вектор цен, i координата которого равна цене единицы продукции i-й отрасли; тогда, например, первая отрасль получит доход, равный р1 х1. Часть своего дохода эта отрасль потратит на закупку продукции у других отраслей. Так, для выпуска единицы продукции, ей необходима продукция первой отрасли в объеме а11, второй отрасли в объеме а21, и т.д., n-й отрасли в объеме аn1. На покупку этой продукции ею будет затрачена сумма, равная а11 р1 + а21 р2 + … + аn1 рn. Следовательно, для выпуска продукции в объеме х1 первой отрасли необходимо потратить на закупку продукции других отраслей сумму, равную х1(а11р1+а21р2+…+ аn1рn). Оставшуюся часть дохода, называемую добавленной стоимостью, мы обозначим через V1 (эта часть дохода идет на выплату зарплаты и налогов, предпринимательскую прибыль и инвестиции).
Таким образом, имеет место следующее равенство:
х1р1 = х1(а11р1+а21р2+…+ аn1рn) + V1.
Разделив это равенство на х1 получаем:
р1 = а11 р1 + а21 р2 + … + аn1 рn + v1,
где v1 = V1/х1 – норма добавленной стоимости (величина добавленной стоимости на единицу выпускаемой продукции). Подобным же образом получаем для остальных отраслей
р2 = а12 р1 + а22 р2 + … + аn2 рn + v2,
рn = а1n р1 + а2n р2 + … + аnn рn + vn.
Найденные равенства могут быть записаны в матричной форме следующим образом:
р = АТр + v,
где v = (v1, v2, …, vn)Т – вектор норм добавленной стоимости. Как мы видим, полученные уравнения очень похожи на уравнения модели Леонтьева, с той лишь разницей, что х заменен на р, у – на v, А – на АТ. [10, С. 200].
Рассмотрим модель Леонтьева во времени. Предположим, что из выпуска каждой отрасли предназначенной для потребления выделяются инвестиции на развитие каждой отрасли. Статический межотраслевой баланс Леонтьева: приравниваем чистый выпуск отраслей конечному спросу на продукцию отраслей.
,
где тогда:
- вектор-столбец годовых валовых выпусков отраслей;
тогда
- вектор-столбец годового конечного спроса на продукцию отраслей;
- матрица прямых затрат, каждый элемент которой aij показывает, сколько единиц продукта i необходимо для производства единицы j-го продукта. При этом предполагается, что aij не зависят от времени и масштаба производства.
Если теперь вектор конечных продуктов yt в каждый год t, представить в виде двух векторов: инвестиционных товаров (продуктов) и потребительских товаров, то получим модель динамического межотраслевого баланса:
где - матрица приростных фондоемкостей, каждый элемент которой bij показывает, сколько единиц продукта i необходимо произвести для увеличения годового производства j-го продукта на единицу;
ct – вектор-столбец
конечного (
С экономической точки зрения соотношение показывает разделение вектора валовых выпусков (а следовательно, и каждый его компоненты) на три части:
- текущее производственное
- капитальные затраты на
- конечное (непроизводственное) потребление.
Динамическая модель межотраслевого баланса характеризует производственные связи народного хозяйства на ряд лет, отражает процесс воспроизводства в динамике. По модели межотраслевого баланса выполняются два типа расчетов: первый тип, когда по заданному уровню конечного потребления рассчитывается сбалансированный объем производства и распределения продукции. Второй тип, включающий смешанные расчеты, когда по заданным объемам производства по одним отраслям (продуктам) и заданному конечному потреблению в других отраслях рассчитывается баланс производства и распределения продукции в полном объеме.[9, С. 45]
Заключение
Мировая экономика это единая тесно переплетающаяся система связей, которую нельзя оставлять бесконтрольной. Она не поддается теории хаоса, то есть хаос не сможет сделать экономику здоровой. Нужны правильные прогнозы, а в данном случае расчеты, с помощью которых человека в лице управляющего страной принял верное решение, куда направлять средства, сколько их тратить, на что ориентироваться в будущем, и что нужно кардинально менять сейчас. Люди долго не могли найти верного решения данной задачи, но Леонтьев помог всему человечеству и открыл знаменитую «модель Леонтьева», за что он и получил соответствующую награду – Нобелевскую премию. Великий ученый до конца своих дней занимался совершенствованием своей модели, помог многим странам выйти из сложнейших экономических ситуаций.
Сегодня экономическая ситуация в мире мало чем отличается от экономики тех времен. Появились новые отрасли, мир стал более развитым, а экономика, так и осталась той экономикой которая существовала во времена самого Леонтьева. Суть ее не поменялась, но изменились подходы к решению проблем связанных с ней. И одним из подходов так и осталась «модель Леонтьева». Она не утратила своих полезных качеств, ее лишь просто нужно перенести на современные реалии.
Следя за сегодняшней ситуацией в мире, и наблюдая развитие кризиса, можно четко сказать, что необходимость правильного планирования экономики очень важна сейчас.
Более детальное изучение данной темы позволило удостовериться в том, что этот метод находит свое применение, так как был найден программный продукт, который реализует его.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
Информация о работе Межотраслевой баланс (модель Леонтьева - задача о межотраслевых связях)