Основные этапы создания математической модели

Автор работы: Пользователь скрыл имя, 24 Апреля 2014 в 12:15, курсовая работа

Описание работы

Современное состояние общества характеризуется внедрением достижений научно-технического прогресса во все сферы деятельности. Переживаемый в настоящее время этап развития является этапом информатизации. Информатизация - это процесс создания, развития и всеобщего применения информационных средств и технологий, обеспечивающих кардинальное улучшение качества труда и условий жизни в обществе. Информатизация тесно связана с внедрением информационно-вычислительных систем, с повышением уровня автоматизации организационно-экономической, технологической, административно-хозяйственной, проектно-конструкторской, научно-исследовательской и других видов деятельности. Создание сложных технических систем, проектирование и управление сложными комплексами, анализ экологической ситуации, особенно в условиях агрессивного техногенного воздействия, исследование социальных проблем коллективов, планирование развития регионов и многие другие направления деятельности требуют организации исследований, которые имеют нетрадиционный характер.

Содержание работы

Введение……………………………………………………………………….3
1. Основы этапы и цели моделирования……………………………………..4
1.1. Постановка цели моделирования………………………………………...8
1.2. Идентификация реальных объектов..........................................................8
1.3. Выбор вида моделей………………………………………………………9
1.4. Выбор математической схемы…………………………………………..13
Заключение………………………………………………………………….…17

Файлы: 1 файл

Osnovnye_etapy_sozdania_matematicheskoy_modeli1.rtf

— 589.74 Кб (Скачать файл)

Динамическое моделирование отображает поведение объекта во времени.

Дискретное моделирование отображает дискретные процессы, непрерывное моделирование - непрерывные процессы, дискретно-непрерывное моделирование - оба процесса.

 В зависимости от формы представления объекта (системы S) выделяют: вымышленные и реальные.

 Вымышленное (абстрактное) моделирование - когда невозможно или дорогое материальное создание (модели микромира). Делится на:

  • наглядное;
  • символическое;
  • материальное.

Наглядное моделирование - на базе представления человека об объекте создаются гипотетические модели, аналоги и макеты. Гипотетическое моделирование - выбирается гипотеза о реальном объекте, гипотеза, которая отображает уровень знаний об объекте, когда знаний не хватает для формализации. Аналоговое моделирование использует аналогии разных уровней (полная, неполная, приблизительная). Макетирование - в основе выполненного макета лежит аналогия причинно-наследственных связей.

Символическое моделирование - искусственный процесс создания логического объекта-заместителя реального с помощью системы знаков и символов. Знаковое моделирование - вводятся знаки, условные обозначения отдельных понятий, составляются из знаков слова и предложения; операции объединения, пересечения и дополнения теории множеств дают описание объекта.

Языковое моделирование - в основе лежит словарь однозначных понятий.

Математическое моделирование - замена реального объекта математическим. Делится на аналитическое, имитационное и комбинированное.

Аналитическое моделирование - процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т.п.) или логических условий. Аналитическая модель может быть исследована следующими методами:

  • аналитическими, когда хотят получить в общем виде явные зависимости для искомых характеристик;
  • численным, когда, не умея решить уравнение в общем виде, получают числовые результаты при конкретных исходных данных;
  • качественный, когда не умея решить уравнение, находят некоторые свойства решений (например, стойкость и др.).

Аналитический метод связывает явной зависимостью исходные данные с искомыми результатами. Это возможно для сравнительно простых систем.

Численные методы позволяют исследовать более широкий класс систем. Они эффективны при использовании ЭВМ. Для построения аналитических моделей существует мощный математический аппарат - алгебра, функциональный анализ, разностные уравнения, теория вероятности, математическая статистика, теория массового обслуживания и т.д.

Имитационное моделирование используется, когда для описания СС недостаточно аналитического моделирования. В имитационной модели поведение компонент сложной системы (СС) описывается набором алгоритмов, которые затем реализуют ситуации, которые возникают в реальной системе. Алгоритмы, которые модулируют по исходным данным (сходное состояние СС) и фактическим значением параметров СС позволяют отобразить явления в S и получить информацию о возможном поведении СС. На основе этой информации исследователь может принять соответствующее решение. Имитационная модель (ИМ) СС рекомендуется в следующих случаях :

    1. нет законченной постановки задачи исследования и идет процесс познания объекта моделирования. ИМ - способ изучения явления.
    2. математические средства аналитического моделирования сложные и громоздкие и ИМ дает наиболее простой способ.
    3. кроме оценки влияния параметров СС необходимо наблюдать поведение компонент СС некоторый период.
    4. ИМ - единственный способ исследования СС, то есть невозможны наблюдения в реальных условиях за объектом.
    5. необходимо контролировать протекание процессов в СС, уменьшая и ускоряя скорость их протекания в ходе имитации.
    6. при подготовке специалистов и освоении новой техники.
    7. изучение новых ситуаций в СС, проверка новых стратегий и принятие решений перед проведением экспериментов на реальной S.
    8. предвиденье узких мест и трудностей в поведении СС при введении новых компонент.

ИМ - наиболее распространенный метод анализа и синтеза СС.

Натурное моделирование - исследование на реальном объекте и обработке результатов экспериментов на основе теории подобия. Научный эксперимент, комплексные исследования, производственный эксперимент (исследуется широкая автоматизация, вмешательство в управление реальным процессом, создание критических ситуаций).

Физическое моделирование - на установках, которые сохраняют природу явлений при физическом подобии.

 Кибернетическое моделирование - нет непосредственно физического подобия. Отображается S как "черный ящик" рядом входов и выходов.

Из всего вышесказанного и условий задания можно определить следующий вид модели:

  • В зависимости изучаемых процессов: стохастическая - неизвестно сколько будет находиться деталей в накопителе при повторной обработке (известно, что если больше 3-х - активизируется второй станок); динамическое - необходимо узнать как система будет функционировать не в конкретный момент времени а на всем промежутки обработки 500-а деталей; непрерывное - из задания следует, что рассматривается автоматизированный конвейер.
  • В зависимости от формы представления: вымышленное (абстрактное) - слишком дорого для студента материальное создание; к данной моделе применимы почти все варианты абстрактного моделирования (математическое, символьное т.д.) так, что нет смысла перечислять все.

 

1.4. Выбор математической схемы

Математическая схема - это участок при переходе от содержательного к формальному описанию процесса функционирования системы с учетом действия внешней среды.

То есть имеет место связка: "описательная модель - математическая схема - математическая (аналитическая и (или) имитационная) модель".

Каждая конкретная система S характеризуется набором свойств, то есть величин, отображающих поведение моделируемого объекта (реальной S) и учитывающих условия ее функционирования во взаимодействии с внешней средой (системой) Е.

При построении ММ системы решаются вопросы о полноте и упрощении. Полнота модели реализуется выбором границы " система S - среда Е ". Упрощение модели - выделение основных свойств S и отбрасывание второстепенных свойств (зависит от цели моделирования).

Математические схемы общего вида:

Модель S можно представить множеством величин, описывающих процесс функционирования реальной системы S.

Эти величины создают в общем случае четыре подмножества :

1) совокупность входных влияний на систему ;;

2) совокупность влияний внешней среды ;

3) совокупность внутренних параметров системы

4) совокупность выходных характеристик системы   .

В этих подмножествах выделяются управляемые и неуправляемые переменные.

При моделировании S входные влияния, влияние внешней среды Е и внутренние параметры системы являются независимыми (экзогенными) переменными в векторной форме:

;

;

.

Выходные характеристики системы - зависимые (эндогенные) переменные.

.       (1)

 Процесс функционирования описывается оператором Fs, который пре-

 образовывает экзогенные переменные в эндогенные :

        (2)

 Совокупность зависимых выходных характеристик системы от времени (1) называется выходной траекторией (t), (2): называется законом функционирования системы S и обозначается Fs.

 В общем случае закон функционирования системы Fs может быть задан в виде функции, функционала, логических условий, алгоритма, таблицы, словесного правила соответствия.

 Таким образом, математическая модель объекта (реальной системы) - это конечное подмножество переменных вместе с математическими связями между ними и характеристиками .

 

Типовые математические схемы:

В практике моделирования объектов в области системотехники и системного анализа рациональней использовать типовые математические схемы:

  • дифференциальные уравнения
  • конечные автоматы
  • вероятностные автоматы
  • СМО (системы массового обслуживания).

ММ на основе этих схем:

1) детерминированные модели, когда при исследовании случайные факторы не учитываются, и системы функционируют в непрерывном времени, основанные на использовании дифференциальных, интегральных, интегро-дифференциальных и других уравнений.

2) детерминированные модели, которые функционируют в дискретном времени - конечные автоматы и конечно-разностные схемы.

3) стохастические модели (при учете случайных факторов) в дискретном времени - вероятностные автоматы.

4) стохастические модели в непрерывном времени - СМО.

Для больших информационно-управляющих систем (Ех, АСУ) типовые схемы недостаточны. Поэтому используют:

5) агрегативные модели (А-системы), которые описывают широкий круг объектов исследования с отображением системного характера этих объектов. При агрегативном описании сложная система разделяется на конечное число частей (подсистем), сохраняя при этом связи между взаимодействующими частями.

Итак, 5 подходов при построении ММ сложных систем :

1) непрерывно-детерминированный (D-схемы);

2) дискретно-детерминированный (R- схемы);

3) дискретно-стохастический (P- схемы);

4) непрерывно-стохастический (Q- схемы);

5) обобщенный или универсальный (А-схемы).

На основе сделанного выбора вида модели (непрерывно-стохастической) необходимо выбрать схему модели, исходя из определения схем для моей модели подходит Q-схема.

 

Заключение

 

Данная курсовая работа должна показать уровень усвоения материала в области системного анализа и навыки при создании моделей систем.

Следует сразу заметить, что в этой курсовой работе не будет рассматриваться моделирование простых систем, т.к. их разработка довольно проста, а основные принципы одинаковы как для сложных систем, так и для простых. Так же не будут рассматривать начальные и основные понятия системного анализа, т.к. постановка задание подразумевает уклон на непосредственно моделирование системы, а не на разъяснения что такое система.


Информация о работе Основные этапы создания математической модели