Қазақстанның жекелеген аймақ мысалында қоршаған ортаның биологиялық факторлардың адам денсаулығына әсері

Автор работы: Пользователь скрыл имя, 15 Ноября 2015 в 15:16, реферат

Описание работы

Ген инженериясы дегеніміз молекулалық биологияның жаңа саласы. Ол лабораториялық әдіс арқылы генетикалық жүйелер мен тұқымы өзгерген организмдерді алу жолын қарастырады. Ген инженериясының пайда болуы генетиканың, биохимияның, микробиологияның және молекулалық биологияның жетістіктерімен байланысты. Бұл атаудың екі түрі қолданылады: «генетикалык инженерия» және «ген инженериясы».

Содержание работы

ІІ.Негізгі бөлім
1.Гендік инженерия туралы жалпы түсініктеме
2.Гендік инженерияның жұмыс кезеңдері
Ген инженериясында генді алу әдістері
Генетикалық инженерияның алдына қойған мақсаты
Гендік инженерия жетістіктерінің қолданылуы
ІІІ.Қорытынды
Пайдаланылған әдебиеттер

Файлы: 1 файл

Гендік+инженерия+және+биоқауіпсіздік.doc

— 93.00 Кб (Скачать файл)

ОҢТҮСТІК ҚАЗАҚСТАН МЕМЛЕКЕТТІК ФАРМАЦЕВТИКА АКДЕМИЯСЫ

«Гигинена-1,дене шынықтыру және валеология» кафедрасы

 

 

 

Тақырыбы:Қазақстанның жекелеген аймақ мысалында қоршаған ортаның биологиялық факторлардың адам денсаулығына әсері

 

 

 

Орындаған:Еркінбаева Б.

Тобы:302 «а» МПД

Қабылдаған:Ибрагимова Б.

 

 

 

 

 

Шымкент 2015 ж

 

Жоспары:

І.Кіріспе

ІІ.Негізгі бөлім

1.Гендік инженерия туралы жалпы түсініктеме

2.Гендік инженерияның жұмыс кезеңдері

    1. Ген инженериясында генді алу әдістері
    2. Генетикалық инженерияның алдына қойған мақсаты
    3. Гендік инженерия жетістіктерінің қолданылуы

ІІІ.Қорытынды

Пайдаланылған әдебиеттер

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Кіріспе

Ген инженериясы дегеніміз молекулалық биологияның жаңа саласы. Ол лабораториялық әдіс арқылы генетикалық жүйелер мен тұқымы өзгерген организмдерді алу жолын қарастырады. Ген инженериясының пайда болуы генетиканың, биохимияның, микробиологияның және молекулалық биологияның жетістіктерімен байланысты. Бұл атаудың екі түрі қолданылады: «генетикалык инженерия» және «ген инженериясы». Соңғы кезде «генетикалық инженерия» жалпылама түрде қолданылып жүр, ген инженериясы да осының ішіне кіреді. Генетикалық инженерия дегеніміз клеткаларда өздігінен көбейе алатын, белгілі бір затты синтездеуге қабілетті тұқым қуалаушылық материалдарын қолдан жасайтын молекулалық биолгияның жаңа саласы. Ген инженериясының дүниеге келген уақыты 1972 жыл деп есептеледі. Сол жылы АҚШ-та П. Бергтің тобы алғаш рет пробиркада үш түрлі (маймылдың SV 40 онкогендік вирусының толық геномы, λ-бактериофагынын геномының бөлшегі және Е. соlі (ішек таяқшасы) лактозалық оперонының гені) микроорганизмнің ДНҚ-ларының фрагменттерінен жаңа гибридтік ДНҚ құрастырды. Бірақ маймылдың рак вирусының, бактериофагтың және ішек бактериясының гендік ДНҚ-ларынан құрастырылған   ол гибридтік ДНҚ-ның клетка ішінде ойдағыдай  жұмыс істей алатындығы тексерілмеді, себебі құрамында рак вирусының нуклеин қышқылы болғандықтан ғалымдар тәуекелге бармады.

 

 

 

 

 

 

 

 

 

1.Гендік инженерия туралы жалпы түсініктеме

Гендік инженерия -  молекулалық және клеткалық генетиканың қолданбалы саласы. Белгілі қасиеттері бар генетикалық материалдарды In vitro жағдайында алдын-ала құрастырып, оларды тірі клеткаға енгізіп, көбейтіп, зат алмасу процесін өзгеше жүргізу. Бұл әдіспен организмдердегі генетикалық информацияны көздеген мақсатқа сай өзгертіп, олардың геномдарын белгіленген жоспармен қайта құруға болады.

    Гендік инженерия ол функционалдық активті генетикалық құрылымдарды рекомбинаттық  ДНҚ молекулалары түрінде қолдан құрастыру. Гендік иженерияның мәні жеке гендерді бір организмнен алып басқа организмге көшіру. Бұған рестриктаза мен лигаза ферменттерінің ашылуы мүмкіндік туғызады. Рестриктазалар ДНҚ молекуласын белгілі жерлерден жеке үзінділерге қиып бөлшектейтін ыдыратушы фермент. Қазір ДНҚ молекуласын бір-бірінен өзгеше 120 жерінен үзетін 500-ден астам рестриктазалар анықталған. Алынған полинуклеотид бөлшектерінінің комплементарлық  немесе жабысқыш ұштарны ДНҚ лигазасы – бір-біріне желімдеп реттеп жалғасытырып қосады. Осы ферменттердің көмегімен бір ДНҚ молекуласынан қажетті ген бөлініп алынып, басқа ДНҚ молекуласын үзінділерімен құрастырылып рекомбинанттық, яғни жаңа будан ДНҚ жасалады.

Одан кейін рекомбинанттық ДНҚ бірнеше әдістермен тірі клеткаға енгізіледі. Жаңа геннің экспрессиясы өтеді де клетка сол ген белгілейтін белокты синтездей бастайды. Сонымен, клеткаға рекомбинанттық ДНҚ молекуласы түрінде жаңа генетикалық информация енгізіп, ақырында жаңа белгісі  жаңа белгісі бар организмді алуға болады. Бұндай организмді трансгендік немесе трансформацияланған организм деп атайды, себебі организмдер өзгеріп басқа қасиетке ие болуын трансформация дейді.

Сөйтіп, гендік инженерияның дамуына негіз болған молекулалық биология мен молекулалық генетиканың мынадай жетістіктер:

  1. рестректазалармен лигазалардың ашылуы;
  2. генді химиялық және ферменттерді қолдану арқылы синтездеу әдісі ;
  3. бөтен генді клеткаға тасымалдаушы векторларды пайдалану;
  4. бөтен генге ие болған клеткаларды таңдап бөліп алу жолдарының ашылуы.

Алғашқы рет рекомбинаттық ДНҚ 1972 жылы АҚШ та Стенфорд университетінде П. Бергтің лабораториясында  жасалған. Онда проберка ішінде үш түрлі микроорганизмнің ДНҚ лары – лямбда фагтің және шек таяқшасы бактериясының ДНҚ фрагменттері мен маймылдың онкогендік вирусының толық геномы қосылған еді.

Өсімдіктердің гендік инженериясы саласында бірінші жұмыстар In vitro өсірілетін клеткалармен 1980 жылы жүргізілген 1983 жылы алдымен күнбағыстың трансгендік каллусы, кейін сол каллустан табиғатта мүлдем болмаған санбин өсімдігі алынды.

Санбин деген ол геномында бұршақтың белогі фазеолинді кодтайтын гендері бар күнбағыс өсімдігі еді.

Гендік инженерия гендерді тасымалдау тәсілі ретінде болашақта екпе өсімдіктердің селекциясының тиімді аспабы бола алады. Қазіргі кезде гендік инженерия алғашқы қадамдарын басып, екпінді дамып келеді.

Гендік инженерияның әдістемелік негізі жарықтың мезофилл клеткаларының немесе каллус ұлпасының протопластары болады. Жаңа генетиканың информацияға ие болған протоплаты өсіріп одан регенерант өсімдігін алуға болады. Генетикалық трансформация үшін сомалық клеткалардан басқа тозаң клеткалары, жұмыртқа клеткасы қолданылады. Сонымен,  In vitro өсірілетін клеткаларға гендік инженерияның әдістерін қолданып, өсімдіктің бағалы белгілері бар негізінде жаңа формаларын құруға болады.

 

 

 

 

2.Гендік инженерияның жұмыс кезеңдері

Гендік инженерияның жұмысы мынадай кезеңдерден тұрады:

  1. басқа организмге көшірілетін құрылымдық генді алу;
  2. оны вектордың құрамына енгізу, яғни рекомбинанттық ДНҚ жасау;
  3. рекомбинанттық ДНҚ-ын өсімдік клеткасына тасымалдау;
  4. өсімдік клеткаларында бөтен ДНҚ-ның экспрессиясын талдау;
  5. геномы өзгерген жеке клеткалардан регенерант өсімдігін алу.

                       Гендерді тасымалдайтын векторлар

Бөтен генді клетка ішіне тасымалдап алып баратын арнаулы ДНҚ молекуласын вектор деп атайды. Оған мынадай талаптар қойылады:

  1. өз алдына репликациялану, яғни клетка ішіне бөтен генді алып кірген соң клеткамен бірге немесе өзалдына көбейе алатын болуы керек; немесе вектор клетка хромосомасының құрамына еніп, онымен бірге ұрпақ клеткаларға беріліп отыруы керек;
  2. трансформацияланған клеткаларды анықтау үшін оның ерекше генетикалық белгілері болуы керек;
  3. құрамында рестриктазалар үзе алатын нуклеотидтер тізбегі болуы керек және репликацияға қабілетін жоғалтпауы керек;
  4. векторға орналастырылған бөтен ген оның атқаратын қызметін бұзбауы керек, ал вектор болса, ол да енгізілген геннің ішінде дұрыс реттеліп жұмыс істеуін қамтамасыз ететін болуы керек;
  5. вектордың көлемі кішігірім болуы керек.

Генетикалық инженерия туындау кезінен бастап ғалымдар қоғамда кейбір зерттеулердің қауіптілігіне назар аудартты. Мұндай қорқыныштын туындаған қауіпсіздік пікір 1974 жылы айтылған болатын. Кейін бірнеше сәтті эксперименттен соң in vitro әдісі арқылы рекомбинантты молекуланың ДНҚ алынды. П.Берг бастаған әйгілі молекулярлы биологтар тобы гендік инженерия эксперименттерін жүргізуді шектеуге шақырды. Айтылған пікір екі жақты болды. Алдымен рекомбинантты ДНҚ молекулаларының зертхана сыртында немесе өнеркәсіп орнында шынымен жасушалардың  «жоғалып» кетуі ескертілсе, сонымен қатар адам және жануарлар ағзасына келтірілетін зиян бақылаусыз концентрацияда өте жоғары екендігі айтылды. Екіншіден клондалған ДНҚ фрагментіндегі құрылымы мен қызметі туралы білімнің жетіспеушілігі, оларды реципиентті жасушаға енгізгенде олар қалаған затымызды ғана емес, одан да басқа қауіпті (токсиндер, онкоген) өнімдерді синтездеу ықтимал.

    1975 жылы бұл мәселелер Халықаралық конференцияларда сөз болды, онда рекомбинантты ДНҚ молекулаларын алу сұрағына тоқталды. Онда биологиялық әр аумағын зерттейтін ғалымдар (медициналық микробиологтар, бактериальді генетиктер, эпидемиологтар, биохимикиер, ботаниктер, даму биологтар т.б.) жәнезаңгерлер, ақпарат көздерінің  мүшелері, мемлекеттік және жеке өнеркәсіп иелері қатысты. Конференцияға қатысушылар гендік инженерия әдісімен жүретін эксперименттер жалғасуы керек деп шешті, бірақ белгігленген ережелер мен ұсыныстарды сақтауы қажет. Бұл ережелер келесі жылдары Англия, АҚШ, Франция мен басқа елдерде жасалынды. Олар бірнеше рет қайта қаралып, жеңілдіктер ұсынылды, себебі жинақталған мәліметтер олардың шектен тыс қаталдығын дәлеледеді, әсіресе дәстүрлі зертханалық штаммдармен жұмыс істеуге қатысты.

     Генотипке әсер ету адам, өсімдік, жануарлар мен қоршаған орта үшін қайта қалпына келмес өзгерістерге ұшыратуы мүмкін. Бақылаудан шығып кеткен немесе арнайы дайындалған генетикалық агенттер, тіршілікті жоятын, әдейілеп қолданылуы оларды биологиялық қару деп қарауға құқық береді. 

Дамыған елдерде азық-түлік сапасын бақылау оның шығаруына дейін жүзеге асады., ал дамушы елдерде – шыққаннан кейін.

    Трансгенді өнімдердің шығуына тыйым салудан жеңілген кей ұйымдар енді оларға арнайы маркировка берілуін талап етіп отыр. ТМД елдерінде биоқауіпсіздік туралы заң қабылдауды – «Гендік-инженерия әрекеті аумағында мемлекеттік бақылау жүгізу туралы».

Қазақстанда гендік-инженерия өнімдері мен препараттарын маркілеу жөніндегі келісім шартқа қол қойды.

    Генетикалық модифицирленген микроорганизмдерді қолдануға байланысты қатерді бағалау. Барлық микроорганизмдар адам үшін патогендік көзқарас тұрғысынан төрт қатерлі топқа бөлінеді:

  1. 1 қауіп тобы: адам ауруын қоздырмайтындар
  2. 2 қауіп тобы: олар мен кім жұмыс жасап отырғандарда ауру тудырады. Алайда микробтра жалпы алғанда азконтагиозды (мысалы, E. coli, Mycoplasma pneumoniae, адам папилома вирусы).
  3. 3 қауіп тобы: адамда ауру тудырады және олармен жұмыс жасушаларға да қауіп тудырады. Қоғамда тарап кету қауіпі бар, бірақ алдын алу шаралары да бар.(Bacillus anthracis, Mycobacterium leprae, АИВ)
  4. 4 қауіп тобы: олармен жұмыс жасушаларда ауру тударады, қоғамда тарап кету қауіпі бар, алдын алу шаралары жоқ. (мысалы – геморрагиялық безгек вирусы). 2-4 топтары патогендік микроорганизмдар біріктіреді. Топтың нөмірі қауіп түрін анықтайды және қорғаныс шараларын да қамтамасыз етеді. Бұл деңгей үшін GLP ( Good Laboratory Practice) ережелер міндетті. Мщдифицирленген генетикалық микроорганизмдерді ұстау деңгейін анықтау үшін « Генетикалық модификацияны халықаралық бақылау камитетінің ережелері» (1993) бар.

     Арнайы кесте бойынша вектор типі анықталады (өз бетінше мобилизденуші - өз бетінше хромосомаға тіркелуші, нашар мобилизденуші немесе мүлдем мобилизденбеуші) екеуі де түзілуші векторды керек етеді.

    Иесінің түрін де есепке алады (жабайы, әлсіз, ауксотроф), промотор астында трансгенді құрылымды кіргізуші түр (максималды экспрессиялы, күшті, әлсіз, арнайы-сайт, дефектілі) және өнімдердің қатерлілігі (улы заттар, БАВ бұзушы әсері бар, аз бұзушы әсерлі, мүлдем әсерсіз, ДНҚ кодталмайтын бірізділігі).

2.1.Ген инженериясында генді алу әдістері

Ген инженериясында генді мынадай әдістермен алуға болады:

  • клеткадағы ДНҚ-дан тікелей кесіп алу;
  • химиялық жолмен синтездеу;
  • аРНҚ-дан кері транскриптаза арқылы синтездеу.

Бірінші әдіс ген инженериясының дамуының алғашқы кезеңінде қолданыла бастады. Белгілі организмнің ДНҚ-сын тугелімен  әр түрлі рестриктазалармен үзіп, әр түрлі фрагменттер алады. Содан кейін оны клетка ішінде «аркалап» кіргізе алатын сақиналы (дөңгелек) плазмидалармен жалғайды, Ол үшін плазмиданы да рестриктазалармен  үзеді, оған әлгі ДНҚ фрагменттерін қосып жалғап, қайтадан бүтін плазмидалар алады. Бұл плазмидалардың әрқайсысының құрамында бір немесе бірнеше бөтен ДНҚ фрагменті (гені) болады, Одан кейін ол плазмидаларды қайтадан бактерияға еңгізеді. Осының нәтижесінде бактерия клеткасының әрқайсысында басқа организм генінің, бір түрі болады, Осындай әртүрлі бөтен гендері бар бактерия клеткаларының жиынтығын немесе коллекциясын «гендер банкі» кейде «гендер кітапханасы» деп атайды. Зерттеушілер ол банкіден уақытында қажет белоктың генін жаңадан тауып алады. Осындай гендер банкі қазір Ресейде, Батыс Европада және АҚШ-та жасалған. Химиялық жолмен жасанды генді 1969 жылы Г. Корана синтездеген. Бірақ оған жалғасқан промотор тізбегі мен транскрипцияны аяқтайтын кодондар болмағандықтан, ол клетка ішінде ешбір қызмет көрсете алмады. Гендрді химиялық синтздуге нуклеин қышқылдарындағы нуклеотидтердің орналасу тәртібін анықтау әдісін тапқаннан кейін  ғана  мүмкіндік  туды. Бұл  әдістерді  тапқан  Д. Джильберт пен  Ф. Сэнгер. Ғалымдар  генді  белоктың құрамындағы амин қышқылдарына  қарап  отырып  синтездеуді де үйренді, (3 нуклеотид — 1 кодон — 1 амин қышқылы деген заңдылық бойынша). Соның ішінде қолдан синтезделген ең ұзын ген, адамның самототропин (өсу) гені, ол 584 нуклеотидтен тұрады. Оны бактериядағы басқа геннің промоторына жалғастырып, плазмида арқылы бактерия клеткасына еңгізді. Соның нәтижесінде бактерияның бір клеткасы 3 млн-ға дейін адам самототропин молекуласын жасай алатын болды. Адам инсулині де химиялық жолмен синтезделіп,  осы айтылған жолмен бактерияға еңгізілді. Инсулин генін 40 аса алты мүшелік олигонуклеотидтерден тұратын түрінде бөліп алып, кейін ДНҚ-лигазаның кемегімен біріктірген. Алынған үзындығы 271 және 286 нб қос тізбекті полинуклеотидтер плазмидаға еңгізілді. Оған қоса бұдан молекулалардың экспрессиясын камтамасыз ететін, ДНҚ-ның реттеуші учаскелері де енгізілді. Клонданған (өркендетілген) гендер проинсулиннің синтезін кодтады, ал оны қарапайым химиялық өңдеу арқылы қос А және В полипептидтік тізбектен тұратын, ұзындығы 21 және 30 амин қышқылдарының қалдықтарынан тұратын, өзара дисульфидтік байланыстары бар белсенді гормонға айналдыруға болады.

Информация о работе Қазақстанның жекелеген аймақ мысалында қоршаған ортаның биологиялық факторлардың адам денсаулығына әсері