Белки

Автор работы: Пользователь скрыл имя, 21 Июня 2013 в 17:15, реферат

Описание работы

Это высокомолекулярные природные полимеры, построенные из остатков аминокислот, соединенных амидной (пептидной) связью —СО—NH—
Белки — важная часть питания животных и человека, поскольку в их организме не могут синтезироваться все необходимые аминокислоты и часть из них поступает с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются при биосинтезе белков организма или подвергаются дальнейшему распаду для получения энергии.

Содержание работы

Белки………………………………………………….….….…..3
Простые и сложные белки………………………….……….…3
Функции белков в организме…………….…………………....4
Белки в обмене веществ…………………………………….…10
Промежуточный обмен аминокислот в тканях……………..14
Общие пути обмена аминокислот……………………………14

Файлы: 1 файл

белки.doc

— 182.50 Кб (Скачать файл)

Содержание

 

Белки………………………………………………….….….…..3

Простые и сложные  белки………………………….……….…3

Функции белков в организме…………….…………………....4

Белки в обмене веществ…………………………………….…10

Промежуточный обмен  аминокислот в тканях……………..14

Общие пути обмена аминокислот……………………………14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

БЕЛКИ

Это высокомолекулярные природные полимеры, построенные из остатков аминокислот, соединенных амидной (пептидной) связью —СО—NH—

Белки — важная часть питания животных и человека, поскольку в их организме не могут синтезироваться все необходимые аминокислоты и часть из них поступает с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются при биосинтезе белков организма или подвергаются дальнейшему распаду для получения энергии.

 

Простые и сложные  белки

Все белки разделяют на две большие  группы — простые и сложные  белки. Простые белки содержат только аминокислоты, сложные белки имеют также неаминокислотные группы. Эти дополнительные группы в составе сложных белков называются «простетическими группами». Примерами простетических групп в составе белков служат гем (в составе гемоглобина), витамины тиамин и биотин. Неорганические простетические группы состоят из ионов металлов — цинка, магния и молибдена.

 

Функции белков в организме

Так же как и другие биологические макромолекулы (полисахариды, липиды) и нуклеиновые кислоты, белки — необходимые компоненты всех живых организмов, они участвуют в большинстве жизненных процессов клетки. Белки осуществляют обмен веществ и энергетические превращения. Белки входят в состав клеточных структур — органелл, секретируются во внеклеточное пространство для обмена сигналами между клетками, гидролиза пищи и образования межклеточного вещества.

Классификация белков по их функции достаточно условна, потому что у эукариот один и тот же белок может выполнять несколько функций. Хорошо изученным примером такой многофункциональности служит лизил-тРНК-синтетаза — фермент из класса аминоацил-тРНК синтетаз, который не только присоединяет лизин к тРНК, но и регулирует транскрипцию нескольких генов. Многие функции белки выполняют благодаря своей ферментативной активности. Так, ферментами являются двигательный белок миозин, регуляторные белки протеинкиназы, транспортный белок натрий-калиевая аденозинтрифосфатаза и др.

Каталитическая  функция

Наиболее хорошо известная  роль белков в организме — катализ различных химических реакций. Ферменты — группа белков, обладающая специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации и репарации ДНК и матричного синтеза РНК. Известно несколько тысяч ферментов; среди них такие, как, например пепсин, расщепляют белки в процессе пищеварения. В процесс посттрансляционной модификации некоторые ферменты добавляют или удаляют химические группы на других белках. Известно около 4000 реакций, катализируемых белками.

Хотя ферменты обычно состоят из сотен аминокислот, только небольшая часть из них взаимодействует  с субстратом, и ещё меньшее количество — в среднем 3-4 аминокислоты, часто расположенные далеко друг от друга в первичной аминокислотной последовательности — напрямую участвуют в катализе. Часть фермента, которая присоединяет субстрат и содержит каталитические аминокислоты, называется активным центром фермента.

Структурная функция

Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. Большинство структурных белков являются филаментозными белками: например, мономеры актина и тубулина — это глобулярные, растворимые белки, но после полимеризации они формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форму.

Коллаген и эластин — основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

Защитная функция

Существуют несколько видов защитных функций белков:

  1. Физическая защита. В ней принимает участие коллаген — белок, образующий основу межклеточного вещества соединительных тканей (в том числе костей, хряща, сухожилий и глубоких слоев кожи )дермы); кератин, составляющий основу роговых щитков, волос, перьев, рогов и др. Обычно такие белки рассматривают как белки со структурной функцией. Примерами этой группы белков служат фибриногены и тромбины, участвующие в свёртывании крови.
  2. Химическая защита. Связывание токсинов белковыми молекулами может обеспечивать их детоксикацию. Особенно важную роль в детоксикации у человека играют ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма.
  3. Иммунная защита. Белки, входящие в состав крови и других биологических жидкостей, участвуют в защитном ответе организма как на повреждение, так и на атаку патогенов. Белки системы комплемента и антитела (иммуноглобулины) относятся к белкам второй группы; они нейтрализуют бактерии, вирусы или чужеродные белки. Антитела, входящие в состав адаптативной иммунной системы, присоединяются к чужеродным для данного организма веществам, антигенам, и тем самым нейтрализуют их, направляя к местам уничтожения. Антитела могут секретироваться в межклеточное пространство или закрепляться в мембранах специализированных В-лимфоцитов, которые называются плазмоцитами. В то время как ферменты имеют ограниченное сродство к субстрату, поскольку слишком сильное присоединение к субстрату может мешать протеканию катализируемой реакции, стойкость присоединения антител к антигену ничем не ограничена.

 

Регуляторная  функция

Многие процессы внутри клеток регулируются белковыми молекулами, которые не служат ни источником энергии, ни строительным материалом для клетки. Эти белки регулируют транскрипцию, трансляцию, а также активность других белков и др. Регуляторную функцию белки осуществляют либо за счет ферментативной активности (например, протеинкиназы), либо за счет специфического связывания с другими молекулами, как правило, влияющего на взаимодействие с этими молекулами ферментов.

Сигнальная  функция

Сигнальная функция белков — способность белков служить сигнальными веществами, передавая сигналы между тканями, клетками или организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.

Сигнальную функцию  выполняют белки-гормоны, цитокины, факторы роста и др.

Гормоны переносятся  кровью. Большинство гормонов животных - это белки или пептиды. Связывание гормона с рецептором является сигналом, запускающим в клетке ответную реакцию. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин, который регулирует концентрацию глюкозы в крови.

Транспортная  функция

Растворимые белки, участвующие  в транспорте малых молекул, должны иметь высокое сродство (афинность) к субстрату, когда он присутствует в высокой концентрации, и легко его высвобождать в местах низкой концентрации субстрата. Примером транспортных белков можно назвать гемоглобин, который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов.

Запасная (резервная) функция белков

К таким белкам относятся  так называемые резервные белки, которые запасаются в качестве источника  энергии и вещества в семенах  растений и яйцеклетках животных; белки третичных оболочек яйца (овальбумины) и основной белок молока (казеин) также выполняют, главным образом, питательную функцию. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма.

Рецепторная функция

Белковые рецепторы  могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях — свет, механическое воздействие (например, растяжение) и другие стимулы. При воздействии сигнала на определенный участок молекулы белок-рецептор происходят её конформационные изменения. В результате меняется конформация другой части молекулы, осуществляющей передачу сигнала на другие клеточные компоненты. Существует несколько механизмов передачи сигнала. Некоторые рецепторы катализируют определенную химическую реакцию; другие служат ионными каналами, которые при действии сигнала открываются или закрываются; третьи специфически связывают внутриклеточные молекулы-посредники. У мембранных рецепторов часть молекулы, связывающаяся с сигнальной молекулой, находится на поверхности клетки, а домен, передающий сигнал, внутри.

Моторная (двигательная) функция

Целый класс моторных белков обеспечивает движения организма (например, сокращение мышц, в том числе локомоцию (миозин), перемещение клеток внутри организма (например, амебоидное движение лейкоцитов), движение ресничек и жгутиков, а также активный и направленный внутриклеточный транспорт (кинезин, динеин). Динеины и кинезины проводят транспортировку молекул (так называемого карго) вдоль микротрубочек с использованием гидролиза АТФ в качестве источника энергии.

 

 

Белки в обмене веществ

Большинство микроорганизмов и растений могут синтезировать 20 стандартных аминокислот, а также дополнительные (нестандартные) аминокислоты, например, цитруллин. Но если аминокислоты есть в окружающей среде, даже микроорганизмы сохраняют энергию путём транспорта аминокислот внутрь клеток и выключения их биосинтетических путей.

У человека и животных лишь часть аминокислот (т. н. заменимых) может синтезироваться в организме из более простых органических соединений. Аминокислоты, которые не могут быть синтезированы животными, называются незаменимыми, должны поступать с пищей (обычно в составе белков). Основные ферменты в биосинтетических путях, например, аспартаткиназа, которая катализирует первый этап в образовании лизина, метионина и треонина из аспартата, отсутствуют у животных.

Животные, в основном, получают аминокислоты из белков, содержащихся в пище. Белки разрушаются в процессе пищеварения, который обычно начинается с денатурации белка путём помещения его в кислотную среду и гидролиза с помощью ферментов, называемых протеазами. Некоторые аминокислоты, полученные в результате пищеварения, используются для синтеза белков организма, а остальные превращаются в глюкозу в процессе глюконеогенеза или используются в цикле Кребса. Использование белка в качестве источника энергии особенно важно в условиях голодания, когда собственные белки организма, в особенности мускулов, служат источником энергии. Аминокислоты также являются важным источником азота в питании организма.

В мире не существует единых представлений о количественной характеристике норм потребления белков. Микрофлора толстого кишечника синтезирует аминокислоты, которые не учитываются при составлении белковых норм.

Белковый обмен, совокупность превращений белков и продуктов их распада — аминокислот в организмах. Белковый обмен — существенная часть обмена веществ. Поскольку обмен аминокислот тесно связан с обменом других азотистых соединений, Белковый обмен часто включают в более общее понятие азотистого обмена. У автотрофных организмов — растений (кроме грибов) и хемосинтезирующих бактерий — Белковый обмен начинается с усвоения неорганического азота и синтеза аминокислот и амидов.

Белки, содержащиеся в различных пищевых продуктах, подвергаются в пищеварительном тракте перевариванию (расщеплению под действием протеолитических ферментов — пепсина, трипсина, химотрипсина и др.) до аминокислот, которые всасываются в кровь и разносятся по органам и тканям.

В тканях растений также  имеются протеолитические ферменты, гидролитические расщепляющие белки. Дальнейшие процессы Белковый обмен у растений и животных по существу являются обменом аминокислот. Значительная часть аминокислот идёт на образование и восполнение различных белков организма, в том числе функционально активных белков (ферменты, гормоны, антитела и т.п.), а также пластических, структурных и др. (см. Белки, биосинтез). В то же время белки организма подвергаются постоянному распаду и обновлению, пополняя фонд свободных аминокислот. Другая часть аминокислот используется для образования ряда низкомолекулярных гормонов, биологически активных пептидов, аминов, пигментов и других веществ, необходимых для жизнедеятельности. Так, для образования пуриновых оснований используется аминокислота глицин; аспарагиновая кислота идёт для синтеза пиримидиновых оснований. Глицин является главным источником образования пигментной группировки гемоглобина. Гормоны щитовидной железы — тироксин и его производные и гормоны надпочечника — адреналин и норадреналин — образуются из аминокислоты тирозина. Триптофан служит источником образования аминов биогенных, а также (частично) никотиновой кислоты и её производных. Ряд других азотистых веществ животного организма, как, например, глутатион, карнозин, анзерин, креатин и другие, являются продуктами соединения или превращения аминокислот. Алкалоиды у растений также образуются из аминокислот.

Взаимное превращение  аминокислот в значительной мере обусловлено широко распространённым у всех организмов ферментативным процессом  переноса аминогруппы — переаминированием, открытым советским учёными А. Е. Браунштейном и М. Г. Крицман. Избыток аминокислот подвергается процессам ферментативного распада. Наиболее общей начальной реакцией распада аминокислот является дезаминирование, главным образом окислительное дезаминирование, после которого безазотистый остаток молекулы аминокислоты распадается до конечных продуктов — двуокиси углерода, воды и азота, отщепляемого в виде аммиака. 
  У животных аммиак обезвреживается путём синтеза мочевины (она образуется у человека, млекопитающих и некоторых других животных в печени и выделяется с мочой) или мочевой кислоты (у птиц, пресмыкающихся и насекомых) и частично выделяется в виде аммонийных солей. У растений (и части бактерий) неорганический аммонийный азот может реутилизироваться, т. е. включаться вновь в синтез аминокислот и амидов, а затем белков. В этих процессах большую роль играют амиды аспарагиновой и глутаминовой кислот — аспарагин и глутамин, являющиеся важнейшими резервными соединениями азота у растений. Эти соединения играют важную роль и в организме животных. Мочевина найдена также и в ряде растений; установлена её существенная роль в обезвреживании аммиака у грибов, бактерий и высших растений. В отличие от животных, у растений мочевина может при образовании достаточного количества углеводов снова включиться в процессы синтеза белка. Т. о., принципиальное отличие Белковый обмен у животных и растений в том, что растения синтезируют белок, предварительно образуя аминокислоты и амиды из неорганических веществ, а образующийся при дезаминировании аминокислот аммиак снова включается (через глутамин, аспарагин и мочевину) в ресинтез белка. Напротив, животные и человек синтезируют белок из аминокислот, получаемых с пищей и частично образованных в результате переаминирования; продукты расщепления аминокислот выделяются из организма. Промежуточные этапы Белковый обмен у растений и животных имеют много общего.

Информация о работе Белки